Статья: Влияние качества топлива на работу двигателя внутреннего сгорания. Влияние бензина на двигатель


Влияние содержащего этанол бензина на двигатель

Вам необходимо знать

Существует большая путаница относительно влияния топлива с содержанием этанола на двигатели морского назначения и на средства поддержания топлива в хорошем состоянии.

По мнению Брайана Клюге, директора отдела комплектующих компании Mercury Marine, качество всех марок бензина, с добавлением этанола или без него, со временем ухудшается (деградирует) из-за испарения, присутствия воды и окисления. Однако этанол может привести к усугублению этой деградации бензина.

Разделение фаз

Бензин E10 (топливо с содержанием этанола до 10 процентов) подвержен процессу разделения фаз, хотя это возникает только при редких условиях. Чистый бензин не обладает способностью поглощения воды, но топливо E10 при определенных условиях может содержать до 0.5 процента воды. Например, 20 галлонов E10 при температуре 60 градусов могут содержать до 12 унций воды. Эти 12 унций воды поглощаются этанолом и проходят по топливной системе без вреда для нее. Способность поглощения воды фактически делает E10 лучшим топливом в идеальных условиях, хотя E0 в основном все еще является более предпочтительным.

Как только топливо достигает полной степени насыщения, в данном случае 12 унций воды, вода и спирт отделяются от бензина и вследствие своей плотности спускаются на дно топливного бака, оставляя верхний слой топлива лишенным этанола, который имеет более низкое октановое число, и тонкий нижний слой, который содержит агрессивную, коррозийную смесь воды и этанола.

Топливные продукты с определенными типами спиртов снижают скорость разделения на фазы, однако на рынке нет продукта — независимо от того, что заявляют производители — который может полностью предотвратить разделение на фазы. Равно как и не существует продукта, который может рекомбинировать, воссоединить разделенные на фазы слои.

E10 присутствует на рынке уже не одно десятилетие, и некоторые географические регионы, особенно на Среднем Западе, больше не предлагают чистый бензин в качестве топлива. Современные двигатели морского исполнения разработаны и изготовлены для заправки как топливом марки E10, так и чистым бензином.

Переход от чистого бензина на топливо E10

Большинство проблем, связанных с E10, возникают при переходе с чистого бензина на E10 или во время сезонного хранения. Проблемы могут возникать в регионах США, где E10 вводится в практику, например, на Восточном побережье и Юго-востоке. Топливная система, в которой использовался только чистый бензин, будет иметь тонкий слой воды на дне топливного бака. Эта вода всасывается заборником топлива в очень малых количествах и проходит через топливную систему без вреда для нее. Обычно это капельки воды, которые вызывают замерзание топливной линии в холодную погоду. Кроме того, со временем в баке будут образовываться отложения продуктов окисления и загрязнения, когда двигатель работает только на чистом бензине. Отложения образуются несмотря на то, что слой воды тонкий, но система двигателя будет оставаться стабильной.

Когда вы добавляете в топливный бак E10, вы тем самым добавляете в него новый растворитель. Этанол будет растворять некоторое количество отложений, которые со временем накопились, потенциально снижая стабильность работы двигателя.

«Кроме этого, при добавлении небольшого количества этанола вероятность разделения на фазы становится очень высокой,« — сказал Эд Альанак, менеджер отдела развития и планирования испытаний двигателей компании Mercury Marine. — «Этот спирт выделяется из топлива в находящуюся ниже воду, при этом воды в топливе будет слишком много, она не будет смешиваться с топливом, и вы получите слой воды и этанола.» «Этот слой может теперь быть достаточно толстым и глубоким в области, где находится сетчатый фильтр патрубка забора топлива (погруженный) в эту смесь воды,« — добавил он.

В результате патрубок забора топлива всасывает в двигатель смесь воды и этанола.

«Для бензинового двигателя это будет совсем неблагоприятным фактором,« — сказал Альанак.

Проблемы перехода можно ограничить с помощью простых указанных ниже процедур:

Сначала проверить систему на присутствие воды в топливном баке и осмотреть и проверить водоотделительный фильтр (на больших двигателях). Если обнаружена вода, из бака необходимо все насухо выкачать. Кроме того, проверить топливо в баке на прозрачность. Если топливо имеет молочный цвет, плавающие в нем частицы или испускает кислый запах, бак необходимо прочистить.Качественное чистящее средство, такое как Mercury’s Quickleen Fuel Product, поможет растворить отложения. Первая полная заправка бака должна состоять только из топлива E10 для того, чтобы в баке находилось максимальное количество абсорбирующего воду этанола.

Необходимо всегда следить за фильтрами и их состоянием, при этом рекомендуется всегда иметь при себе дополнительные топливные фильтры на случай возникновения потенциальных проблем с забиванием фильтров.

Сезонное хранение

Сезонное хранение также вызывает проблемы. Температура может в большой степени снизить способность этанола связывать воду. Помните те самые 20 галлонов топлива, которые смогли поглотить 12 унций воды при температуре 60 градусов? При температуре 20 градусов те же самые 20 галлонов могут поглотить восемь или девять унций воды, приблизительно две трети воды, которая могла бы быть поглощена при идеальных температурах. Вода и этанол, которые были поглощены в теплую погоду, теперь разделяются и оседают на дно топливного бака. Во время хранения топливо может также окисляться (вступать в реакцию с кислородом в баке). Окисленное топливо будет издавать кислый запах и будет обесцвеченным. Оно также может иметь мелкие частицы смолы, которые содержатся в нем во взвешенном состоянии. Окисленное топливо может забивать топливные фильтры, создавать отложения в топливной системе, особенно в инжекторах, и в целом отрицательно влиять на рабочие характеристики двигателя. После того, как топливо окислилось, его невозможно обратно восстановить и превратить в топливо, пригодное для использования.

Компания Mercury рекомендует ставить лодку на хранение с полным топливном баком для снижения количества воздуха, с которым может взаимодействовать топливо, и для снижения вероятности возникновения конденсации. Компания Mercury также рекомендует добавлять качественный топливный стабилизатор, такой как Mercury’s QuickStor.

Некоторые помещения для хранения требуют, чтобы топливные баки во время сезонного хранения были пустыми. В большинстве случаев в этих помещениях имеются инструменты и насосное оборудование для откачки топлива из двигателя и линий.

Все марки бензина деградируют

Чистый бензин или бензин марки E10 будет со временем деградировать. При этом бензин требует особого внимания к своему состоянию и принятия мер по сохранению его качества, независимо от того, что используется в качестве топлива — чистый бензин или бензин с добавкой этанола. «На рынке имеются три утвержденных законом типа продуктов, которые позволяют предотвратить связанные с топливом проблемы, независимо от типа бензина,« — сказал Клюге.

Он рекомендует использование следующих продуктов:•Чистящие средства, которые добавляются к топливу для удаления отложений в топливном баке и двигателе и которые могут быть использованы для краткосрочной чистки или длительного техобслуживания. •Стабилизаторы, которые помогают снизить темп деградации топлива и приобретения им кислого запаха и которые содержат коррозионные ингибиторы. Стабилизаторы часто используются во время сезонного хранения или тогда, когда топливо не будет потребляться в течение месяца или около этого. •Средства для предотвращения замерзания, состоящие из спирта, соединяются с топливом в баке и снижают точку замерзания присутствующей воды. Для бензина, содержащего до 10 процентов этанола (E10), средства для предотвращения замерзания не требуются. За дополнительной информацией по топливу E10 и топливным присадкам обращаться сайт компании Mercury MarineСредства Mercury’s Quickleen, Quickare и Quickstor помогают замедлить влияние содержащего этанол бензина на двигатель!image00.jpg

ЧАСТО ЗАДАВАЕМЫЕ ВОПРОСЫ по бензину марки E10 Какими характеристиками обладает этанол?

Этанол — это окисленное углеводородное соединение, имеющее высокое октановое число и поэтому пригодное для увеличения уровня октана в неэтилированном бензине. Организация EPA, агентство по защите окружающей среды, отвечающее за установление ряда требований и нормативов для всех используемых в США марок бензина, допускает использование этанола в бензине на уровне до 10 процентов в качестве повышающей октановое число добавки и меры обеспечения благоприятных характеристик чистого сгорания, которое способствует снижению выброса некоторых вредных веществ. Этанол гигроскопичен (т. е. поглощает воду), он легче и быстрее смешивается с водой, чем бензин. Он обладает отличной от бензина растворимостью, включая способность разрыхлять ржавчину и засорения, которые могут находиться в нетронутом, неразрушенном состоянии в топливной системе. Он может легче и быстрее удалять пластификаторы и смолы из определенных пластмассовых материалов, на которые только один, чистый, бензин повлиять не может. Разрыхленные засорения забивают фильтры и могут мешать работе двигателя. Кроме того, этанол является агрессивным, коррозионным агентом для некоторых металлов, особенно в сочетании с водой. Хотя бензин не проводит хорошо электрический ток, этанол обладает значительной способностью проводить электрический ток и поэтому может провоцировать гальваническую коррозию.

Влияет ли этанол на мощность или экономию топлива?

Этанол имеет теплотворную способность, равную 76,000 британских тепловых единиц (BTU — БТУ) на один галлон, что приблизительно на 30 процентов меньше, чем теплотворная способность бензина [приблизительно 109,000 — 119,000 BTU/gal (БТУ/галлон)], бензин E10 должен давать несколько меньший пробег в милях, т. е. снижение приблизительно на 3 процента. Топлива, содержащие более высокий уровень этанола, будут соответственно приводить к сокращению пробега в милях. Например, топлива марки E85 дают пробег в милях приблизительно на 30 процентов меньше, чем бензин. Октановое число чистого этанола (крепости 200) равно приблизительно 100 и поэтому пригодно для повышения октанового числа бензина. В блендах E-10 присутствие этанола обеспечивает около 2.5 — 3 процентов суммарного октанового числа. Влияние на мощность двигателя определяется результирующим октановым числом топлива с добавкой. В выборе марок топлива для правильной работы необходимо соблюдать осторожность и выбирать топлива с октановым числом, которое рекомендовано для конкретного двигателя, как указано в руководстве по работе, обслуживанию и гарантии (Operation, Maintenance & Warranty Manual).

Могут ли топлива с содержанием этанола влиять на работу традиционных 2-тактных карбюраторных подвесных лодочных моторов?

2-тактные подвесные лодочные моторы не должны испытывать совсем никакого снижения рабочих характеристик или испытывать лишь небольшое их снижение из-за бензиновых топлив, содержащих до 10 процентов этанола, когда моторы эксплуатируются по стандартам согласно рекомендациям компании Mercury. Когда бензин с этанолом используется в первый раз после перехода с топлива с метил-трет-бутиловом эфиром, бак должен быть полностью освобожден от воды перед заправкой бензина с этанолом. В противном случае может возникнуть разделение на фазы, которое может вызвать забивание фильтра или повреждение двигателя. Вероятно, для владельца лодки лучше в первый раз заправлять топливные баки топливом с этанолом тогда, когда в баке низкий, но некритичный уровень топлива. Если бак чистый и в нем нет воды, не должно быть никаких трудностей. Если в баке присутствует вода, то частичная заправка топлива приведет к разделению на фазы быстрее, т. к. с меньшим содержанием этанола в баке требуется меньше воды для разделения на фазы. Важным фактором для владельцев лодок, с которым они должны считаться, является присутствие воды в баках их систем. Если двигатель выпуска 1990 года или ранее, то рекомендуется проводить частые осмотры и проверки всех узлов и деталей топливной системы для того. чтобы обнаружить любые признаки утечек, смягчения, затвердения, вздутия или коррозии. Если наблюдается любой признак утечки или ухудшения состояния, то перед дальнейшей работой необходимо заменить поврежденный узел или деталь.

Как этанол влияет на топливный бак из стекловолокна?

Стекловолоконные топливные баки, изготовленные до 1991 года, возможно, были несовместимы с бензином, содержащим этанол. Имеются свидетельства того, что в присутствии этанола некоторые смолы могут вытягиваться из стекловолокна и попадать в двигатель, где они могут вызвать серьезные повреждения. Если используется стекловолоконный бак более старой модификации, связаться с производителем и определить возможность безопасного использования бензина с этанолом в этом баке.

Подвержены ли старые топливные линии отказам и повреждению от топлива на основе этанола? А что происходит с прокладками?

В 1980-ые годы для использования в топливных системах разрабатывалось множество резиновых изделий и комплектующих, способных выдерживать воздействие топлива с содержанием этанола. Если имеются подозрения на то, что резиновые комплектующие и изделия в топливной системе выпущены именно в те годы или еще раньше, то перед использованием марок топлива с содержанием этанола, может быть, целесообразно заменить их более новыми изделиями, которые безопасны и выдерживают воздействие этанола. Посоветоваться с производителем или часто осматривать и проверять эти узлы и детали топливной системы на признаки вздутия или ухудшения состояния и, если обнаружены проблемы, заменить.

В моем регионе этанол заменяет метил-трет-бутиловый эфир (MTBE). Что мне необходимо сделать?

Перед тем, как заливать бензин с этанолом в свой топливный бак, проконсультируйтесь с производителем вашей лодки на предмет необходимости принятия специальных мер предосторожности при использовании топлива, содержащего этанол. Проверьте свой топливный бак на присутствие в нем воды. Если обнаружите любое количество воды, удалите всю воду и полностью просушите бак. В качестве меры предосторожности советуем всегда иметь при себе дополнительные фильтры на случай, если во время работы на лодке фильтр засорится или будет забит.

Имеются ли присадки или добавки, которые могут предотвратить разделение на фазы? Практически добавок, которые могут предотвратить разделение фаз, не существует. Единственным практическим решением является одно — прежде всего не допускать накопления воды в баке.Имеются ли добавки, которые при добавлении в топливный бак, позволяют снова смешать разделенную на фазы смесь?Нет. Единственным способом, который позволяет избежать дальнейших проблем, является удаление воды, утилизация истощенного топлива, чистка бака; и затем необходимо начать с использования свежего обезвоженного топлива.

Есть ли простое решение проблемы конденсации воды в баке при применении этанола?

Лучше всего следить за тем, чтобы, когда двигатель не эксплуатируется, топливный бак был всегда полным. Это позволит уменьшить объем пустого пространства над уровнем топлива в баке и снизить приток воздуха в бак и отток воздуха из него при температурных колебаниях. Это приведет к уменьшению конденсации на внутренних стенках бака и ограничит воздействие влажности и конденсации на этанол в топливе.

3 фактора ухудшения качества и состояния бензина 1. ИСПАРЕНИЕ

Более легкие химические вещества в бензине испаряются в баках, имеющих средства вентиляции, тем самым оставляя после этого в баке более тяжелое топливо, которое не принесет вреда двигателю, но может вызвать проблемы с запуском холодного двигателя.

2. ПРИСУТСТВИЕ ВОДЫ

Вода от конденсации оседает и накапливается на дне бака под топливом. Эта вода может стать причиной коррозии и замерзания бензопроводных линий.

3. ОКИСЛЕНИЕ

Топливо вступает в реакцию с кислородом, образуя новые соединения. Окисление ведет к образованию осадка, смолы и кислотных отложений. Окисленный бензин будет иметь измененный цвет (обесцвечен), кислый запах, а также может содержать мелкие частицы смолистого вещества во взвешенном состоянии. Окисленное топливо может забить топливные фильтры, стать причиной образования отложений в топливной системе, особенно в инжекторах, и в целом привести к снижению эксплуатационных характеристик двигателя.

оригинал статьи

flagman-24.ru

Влияние изменения качества дизельного топлива на работу двигателя

По ГОСТ 25549-90 Химмотологическая карта – это документ, устанавливающий номенклатуру, массу (объем) ГСМ, а также сроки смены в изделиях техники конкретных марок масел, смазок и специальных жидкостей, в том числе несменяемых и непополняемых в процессе эксплуатации и ремонта. ХК является составной частью конструкторской документации. Фрагменты одной из химмотологических карт представлены ниже.

Фрагменты одной из химмотологических карт представлены ниже.

Наименование показателя качества

Характер изменения показателя качества от нормы

Признаки нарушения в работе двигателя. Ожидаемые последствия.

1

2

3

Цетановое число

Ниже нормы

Ухудшается запуск двигателя. Повышается жесткость рабочего процесса, увеличивается расход топлива и дымность отработавших газов.

Выше нормы

Ухудшается экономичность и повышается дымность отработавших газов.

Кинематическая вязкость

Ниже нормы

Улучшается распыливание топлива, но снижается подача насоса вследствие утечки маловязкого топлива. Снижается максимальное давление в трубопроводе высокого давления и цикловая подача топлива. Увеличивается износ плунжерных пар.

Выше нормы

Возрастают сопротивление в топливной системе, потери на трение. Уменьшается наполнение насоса, возможны перебои в его работе. Увеличивается дымность отработавших газов и удельный расход топлива.

Температура застывания помутнения предельной фильтруемости

Выше нормы

Ухудшается подача топлива и прекращение работы дизеля.

Температура вспышки

Ниже нормы

Возрастает пожарная опасность работы с топливом.

Содержание общей серы

Выше нормы

Коррозия металлических деталей аппаратуры и двигателя, связанная с образованием агрессивных веществ (SO2, SO3,) в продуктах сгорания. Повышенный износ. Образование отложений. Снижение надежности.

Содержание меркаптановой серы

Выше нормы

Коррозия металлических деталей топливной системы. Повышенный износ аппаратуры и ЦПГ.

Концентрация фактических смол

Выше нормы

Увеличение отложений в топливной системе и камере сгорания. Образование осадков на фильтре, в трубопроводах в топливном баке. Снижение надежности двигателя.

Кислотность

Выше нормы

Возрастает коррозионная активность и склонность топлива к отложениям в системе питания и камере сгорания. Снижается сохраняемость качества.

Йодное число

Выше нормы

Снижается химическая стабильность топлива при хранении. Увеличивается склонность к образованию отложений и нагарообразования.

Зольность

Выше нормы

Наличие минеральных примесей (в т.ч. и зольных присадок). Склонность топлива к образованию отложений в камере сгорания и твердых частиц в продуктах сгорания.

Объемная доля ароматических углеводородов, в т.ч. бензола

Выше нормы

Увеличивается склонность к образованию отложений и нагара в камере сгорания. Уменьшается мощность и экономичность двигателя.

Коксуемость

10% остатка

Выше нормы

Повышенная склонность топлива к нагарообразованию. Увеличение отложений в камере сгорания. Снижение полноты сгорания, снижение экономичности и повышенный износ ЦПГ.

Коэффициент фильтруемости

Выше нормы

Свидетельствует об ухудшении чистоты топлива, связанной с наличием воды, механических примесей, смолистых веществ, мыл нафтеновых кислот. Ухудшается подача топлива, увеличивается износ деталей топливной аппаратуры.

Плотность

Выше нормы

Свидетельствует о повышенном содержании тяжелых углеводородов – нафтенового и ароматического основания – и меньшем содержании парафинового основания. Косвенно позволяет прогнозировать уровень эксплуатационных свойств.

studfiles.net

Влияние качества топлива на работу двигателя внутреннего сгорания

Оглавление :

Стр.

Введение 3

Глава1

1.1Современные и перспективные требования и технологии к качеству тяжелых моторных и судового маловязкого топлива. 4-7

Глава2

2.1Влияние асфальтенов на работу ДВС. 8-11

2.2Влияние присадок на ДВС . 11-16 2.3Противоизносные свойства топлив. 16-19

2.4Влияния качество топлива на противоизносные

свойства топлив. 19-24

Список литературы. 25

Введение

Тяжелые моторные и судовые топлива использу­ют в судовых энергетических установках. К котельным топливам относят топочные мазуты марок 40 и 100, вырабатываемые по ГОСТ 10585— 75, к тяжелым моторным топливам — флотские мазуты Ф-5 и Ф-12 по ГОСТ 10585-75, моторные топлива ДТ и ДМ — по ГОСТ 1667-68. К судовым топливам относят дистиллятное топливо ТМС по ТУ 38.101567— 87 и остаточные топлива СВТ, СВЛ, СВС по ТУ 38.1011314-90.

В общем балансе перечисленных топлив основное место занимают мазуты нефтяного происхождения. Жидкие котельные топлива из сланцев, получаемые на установках полукоксования горючих сланцев и угля, — продукты коксохимической промышленности — составляют лишь небольшую долю общего объема производства топлив. [3]

Требования, предъявляемые к качеству котельных, тяжелых моторных и судовых топлив, устанавливающие условия их применения, определяются такими показателями качества, как вязкость, содержание серы, теплота сгорания, температуры застывания и вспышки, содержание воды, механических примесей и зольность.

Отсюда следует, что от качества топлива зависит надежная работа двигателя. Поэтому при выборе топлива рассматриваются его качество и как оно будет влиять на работу ДВС.

Глава1

1.1Современные и перспективные требования и технологии к качеству тяжелых моторных и судового маловязкого топлива

Настоящие технические условия распространяются на топливо маловязкое судовое получаемое из дистиллятных фракций прямой перегонки и вторичной переработки нефти.

Топливо маловязкое судовое должно изготавливаться в соответ­ствии с требованиями настоящих технических условий по технологии, согласованной с разработчиком и утвержденной в установленное порядке.

Топливо маловязкое судовое вырабатывается трех видов в зависимости от массовой доли серы: [6]

I вид - с массовой долей серы не более 0,5 %; код ОКП 02 5195 0301

II вид - с массовой долей серы не более 1,0 %; код ОКП 02 5195 0302

III вид - с массовой долей серы не более 1,5 %; код ОКП 02 5195 0303

При производстве топлива маловязкого судового разрешаемся использование присадок, допущенных к применению в установленном порядке.

Топливо маловязкое судовое соответствует марке ДМА MS IPO - 8217.

На предприятиях, впервые осваивающих производство топлива маловязкого судового, осуществляется постановка его на промыш­ленное производство по ГОСТ 15.001.

Производство топлива маловязкого судового допускается только на предприятиях, согласовавших настоящие технические условия и внесенных, как производитель, в каталожный лист продукции, зарегистрированный в установленном порядке.

Топливо маловязкое судовое должно соответствовать требо­ваниям настоящие технических условий, указанным в таблице. [6]

Таблица 14 — Технические требования на СМТ (ТУ 38.101567-2000)

Судовое маловязкое топливо по ТУ 38.101567-87 — это среднедистиллятное топливо, в отличие от моторного ДТ и судового высоковязкого топлива, получаемых смешением остаточных и среднедистиллятных фракций. Предназначено для применения в судовых энергетических установках вместо дизельного топлива. Компонентами маловязкого судового топлива являются негидроочищенные прямогонные атмосферные и вакуумные дистилляты, продукты вторичного проис­хождения — легкие и тяжелые газойли каталитического и термического крекинга, коксования.

Таблица 15 — Характеристики моторного топлива для среднеоборотных и малооборотных дизелей (ГОСТ 1667-68)

Таблица 16 — Характеристики маловязкого судового топлива (ТУ 38.101567-87)

Таблица 17 — Характеристики мазутов (ГОСТ 10585-75)

mirznanii.com

Особенность влияния топлива на работу двигателей японских автомобилей

После того, как японские автомобили попадают на российские рынки, с ними могут быть связаны некоторые проблемы, которые лежат в плоскости эксплуатации в условиях наших дорог, а также тех комплектующих и горюче-смазочных материалов, которые мы используем в их обслуживании. Примерно после первой сотни километров пробега автомобиль может получить неисправный катализатор, который ломается из-за этилированного бензина. Как известно, именно таким топливом заправляется абсолютное большинство железных лошадок, которые скачут по нашим дорогам. Исходя из того, что топливо не в полной мере предназначено для японских двигателей, водители нередко могут натолкнуться на целый ряд неприятностей с работой различных датчиков. Неправильное функционирование датчиков вызывает распространенное увеличение расхода топлива, что делает авто менее экономичным.  влияния топлива на работу двигателей японских автомобилейРешаются обозначенные нарушения периодичной чисткой датчиков, диагностикой работы двигателя и обновлением всех настроек электроники. Конечно, такие работы часто могут быть не в полной мере удобными для вас, но зато проведение этих процедур существенно оптимизирует функционирование авто как такового. Довольно сложно сказать, насколько масштабно и существенно влияние этилированного топлива на двигатель. Во многих регионах практически все машины работают именно за ним. Более того, даже в таких условиях японцы доставляют нам меньше хлопот, чем наши двигатели, которые довольно часто демонстрируют свои неполадки и нарушения.  Более требовательными к качеству топлива являются сравнительно новые типы карбюраторов, которые основаны на непосредственном впрыске топлива в двигатель. Соответственно, такие двигатели имеют еще большие проблемы в своей работе, так как страдают именно от качества топлива. Из-за очень весомой степени сжатия бензина проблема еще более обостряется. Это сказывается и на особенностях поставок отдельных моделей, которые просто нельзя сегодня найти на наших дорогах. Из-за того, что их двигатели сложно приспособить к нашим условиям, производители просто не поставляют их в страны СНГ. Если вы хотите подобрать необходимые контрактные двигатели, которые смогут решить ваши проблемы с функционированием автомобиля, наша фирма сможет поставить вам именно такую модель контактного двигателя, которая подойдет вашему автомобилю и будет обеспечивать максимальную защиту от самых разных проблем, исходящих из внешней среды.

wsahingcar.com

Свойства бензина, влияющие на пуск двигателя

В качестве основного вида топлива для двигателя с воспламенением от искры применяются различные виды бензинов. Заменителями бензинов могут служить метанол и этанол (метиловый и этиловый спирты), а также сжиженные нефтяные и сжатые природные газы. Последние по технико-экономическим и санитарно-гигиеническим показателям являются лучшими его заменителями.

В нашей стране согласно ГОСТ 2084—77 выпускаются бензины четырех марок: А-72, А-76, АИ-93, АИ-98. Первые три сорта бензинов с 1 октября по 1 апреля выпускаются зимнего вида и могут применяться в любое время года в северных и северо-восточных районах страны. Летние сорта этих бензинов выпускаются соответственно с 1 апреля по 1 октября. Бензины АИ-98 не имеют сезонных различий, и их пусковые свойства больше соответствуют летним сортам. У всех сортов выпускаемых бензинов отсутствует маркировка по признаку сезонности, а возможность их использования в зимних условиях определяется пусковыми свойствами.

Пусковые свойства бензинов характеризуются фракционным составом и давлением насыщенных паров. Оказывают определенное влияние на образование смеси другие физические свойства бензина:

  • скрытая теплота парообразования (испаряемость)
  • коэффициент диффузии паров
  • вязкость
  • поверхностное натяжение
  • теплоемкость
  • плотность

Характер влияния данных параметров на разных стадиях образования смеси неодинаков.

Возможность обеспечения пуска двигателя зависит от эксплуатационно-технических свойств топлива, к которым относятся антикоррозионная стойкость и загрязненность механическими примесями и водой.

У бензинов различных сортов испаряемость при одинаковых температурах различна и в значительной мере определяется фракционные составом, в связи с чем оценку его испаряемости определяют по количеству испарившихся фракций в зависимости от температуры.

Температура выкипания Tвык 10 % бензина характеризует его пусковые свойства в условиях низких температур. От температуры выкипания 50 % бензина зависит время прогрева двигателя после пуска и возможность быстрого прекращения обогащения топливовоздушной смеси. С повышением температуры выкипания 90 % бензина увеличивается количество тяжелых фракций, попадающих в цилиндры в капельножидком состоянии и смывающих масляную пленку с зеркала цилиндров.

Использование в качестве критерия оценки пусковых свойств топлива температуры выкипания 10 % бензина явно недостаточно. При одной и той же температуре выкипания 10 % бензина различных сортов топлива отличаются давлением насыщенных паров, от которого зависит интенсивность испарения. Давление насыщенных паров падает с понижением температуры, но характер этой зависимости для различных бензинов неодинаков. Поэтому пусковые свойства бензина дополнительно оценивают по величине давления насыщенных паров. Приведенная зависимость показывает, что условия пуска холодного двигателя резко ухудшаются при понижении давления насыщенных паров ниже 33,25 кПа. При использовании бензина с давлением насыщенных паров 28,5 кПа и Твык 10% бензина 55 «С пуск двигателя обеспечивается до температуры — 15 «С. При увеличении рн до 53,2 кПа и такой же Твык (60 «С) 10 % бензина пуск двигателя при n = 50 мин-1 осуществляется при температурах от -20 до -25 «С. Влияние физических свойств бензинов на его пусковые качества учитывается при разработке требований к фракционному составу и рн зимних сортов автомобильных бензинов. Однако при длительной стоянке автомобиля испарение легких фракций зимнего сорта бензина из поплавковой камеры карбюратора затрудняет пуск двигателя при низких температурах. Поэтому при обновлении топлива в поплавковой камере перед пуском сокращается продолжительность пуска двигателя.

Зависимость температуры пуска

Рис. Зависимость температуры пуска Т двигателя с Vh = 1,7 л от величины давления насыщенных паров бензина: А, Б — зоны соответственно надежного и ненадежного пусков

Зависимость времени пуска двигателя

Рис. Зависимость времени пуска двигателя с Vh > 1,7 л на масле М-6/10Г, от n при различной Твык и использовании бензина с разной величиной рh: а — рh = 28,46 кПа; b-рh = 59,85 кПа

Несмотря на положительные физические свойства газового топлива такие, как высокое октановое число и широкие пределы воспламене ния, пуск холодного двигателя без специальных мер не всегда возможен. Наличие влаги приводит к образованию ледяных пробок в топливной системе и к шунтированию электродов свечей зажигания в процессе воспламенения смеси. Определенные трудности возникают в приготовлении газовоздушной смеси при наличии примесей и нестабильности фракционного состава газа.

При использовании в качестве топлива спиртов возникают трудности в осуществлении пуска из-за высокого значения скрытой теплоты испарения. Спирты, попадая на зеркало цилиндров, быстрее, чем бензин, разрушают масляную пленку. Соединяясь с водой, они образуют водоэмульсионную масляную пленку, снижающую смазочные свойства масла. Поэтому спирты применяются пока как добавки к бензину (до 10-15 %), что повышает технико-экономические показатели такого вида топлива, но ухудшает их пусковые свойства при низких температурах.

ustroistvo-avtomobilya.ru

Статья - Влияние качества топлива на работу двигателя внутреннего сгорания

--PAGE_BREAK--Полимеризация несгоревших частиц топлива и конденсация на цилиндровой втулке приводят к образованию лакообразного нагара. Твердый смолообразный материал на втулке цилиндра и в полиро­ванных канавках вызывает прекращение действия смазки. Это обычно случается при работе на легком дизельном топливе четырехтактных двигателей, однако зарегистрированы так­же подобные случаи и в двух­тактных крейцкопфных двига­телях. Циклические углеводоро­ды не сгорают полностью во время такта сгорания (расши­рения), и небольшая часть образовавшихся отхо­дов прилипает к втулке, вызывая лакообразный нагар. При этом оценка по­тери эффективности смазки может произ­водиться      по      величине толщины лакообразующих отложений в канавках втулки после 1000 час. работы двигателя и расходу смазки, который не должен превышать 0,2 ррт сгоревшего топлива.  На рис. 4 показано влияние лакообразующего нагара на эффектив­ность смазывания и расход смазки по результатам экспериментальных исследований на двигателе голланд­ского рыболовного судна, которые под­тверждаются данными по другим судам. На этих судах двигатели работали с большими перегрузками и использовали низкокачественное дизельное топливо MGO. При работе двигателей с меньшей мощностью вследствие снижения сопро­тивления трала расход масла возвраща­ется к нормальному уровню. Это оз­начает, что в случае уменьшения дейст­вия этих факторов образование нагара на втулках сокращается. Хотя применение высокоэффектив­ных смазок и легкого дизельного топли­ва с содержанием серы на уровне 1 % снижает лакообразующие отложения, еще не найдено удовлетворительное ре­шение проблемы создания смазки, уменьшающей и предотвращающей нагарообразование. Более непосредственным способом воздействия на лакообразующие отло­жения является химическая очистка топ­лива, основанная на сильнодействую­щих моющих средствах (детергентах), которые могут обеспечивать чистоту высокотемпературных поверхностей в камерах сгорания. Были проведены ис­пытания комбинации химикатов для очистки топлива на двигателе с большим расходом смазки, обусловленном лакообразующими отложениями на втулке. Результаты экспериментов пока­зали, что для быстрого достижения по­ложительного эффекта минимальная до­за присадки должна равняться 1 литр/м3 топлива. Все случаи значительного сни­жения расхода лубрикаторной смазки были подтверждены эндоскопическим осмотром. В ближайшем будущем ожидается ухудшение качества топлива из-за повы­шения содержания в нем асфальтенов. Поэтому поставщики смазочных мате­риалов предложили новые улучшенные продукты. Крупнейшие машиностроите­ли призывают судовладельцев перейти на использование новых сортов масел, кото­рые вместе с химической очисткой топли­ва должны обеспечить решение пробле­мы загрязнения двигателей черными асфальтеновыми отложениями. 2.2Влияние присадок на двигатель При работе дизельного двигателя на фор­сунках и в камере сгорания образуются отло­жения, нарушающие подачу топлива и нормаль­ное протекание рабочего процесса. В результа­те снижается мощность и экономичность дви­гателя, увеличиваются дымность и токсичность отработавших газов. Моющие присадки, пред­назначенные для автомобильных бензинов, в данном случае оказываются бесполезны, так как обладают недостаточно высокой термической стабильностью и в жестких условиях дизель­ного двигателя разлагаются. За рубежом часто используют специальные присадки к дизельным топливам на основе тер­мостабильных ПАВ. Анализ литературы и па­тентов показывает, что в общем случае в присадку кроме ПАВ входят модификаторы нага­ра и небольшое количество катализаторов го­рения. В качестве модификаторов нагара ис­пользуются кислородсодержащие соединения, например, оксиалкилированные алкилфенолы, а в качестве катализаторов горе­ния — соединения переходных металлов (железа, меди, редкоземельных элемен­тов). Катализатор горения берется в та­ких количествах, что концентрация ме­талла в топливе составляет не более 100 млн1. Собственно, каталитическое влияние оказывают оксиды металлов, об­разующиеся при сгорании присадок с то­пливом. Металлсодержащие присадки ис­пользуют не только как антинагарные, но и как антисажевые, снижающие темпе­ратуру выгорания сажи и препятствую­щие забивке сажевых фильтров. Так на­пример, фирмой Lubrizol разработана то­варная присадка, эффективная в концен­трации до 70 млн"1 в расчете на медь [1]. Авторами статьи на основе доступно­го отечественного сырья разработан об­разец антинагарной присадки антикокс, представляющий собой композицию термостабильного ПАВ, фракции кислородсодер­жащих соединений и катализатора горения — топливорастворимой соли меди. Присадка антикокс характеризуется сле­дующими физико-химическими показателями: кинематическая вязкость при 20°С,   40 мм2/с, не более плотность при 20°С, кг/м3       ~880 температура вспышки, °С, не ниже   35 концентрация меди, % мае.       ~15

Рекомендуемая концентрация присадки в топливе составляет 0,01-0.02гс в зависимости от способа применения. При постоянном при­менении достаточно 0,01-0,02%. Возможно также использование присадки в автосерви­се: для безразборной очистки двигателя, раскоксовывания поршневых колец и т.д. При этом временно можно использовать дозы, дос­тигающие 0,1%.

 

На рис. 1-3 приведены результаты испы­таний присадки в количестве 0,1% мае. в со­ставе дизельного топлива Л на двигателе 2ч8,5/11. Испытания проведены в АООТ «ЭлИНП» по методике, согласно которой пред­варительно нарабатывался нагар в течение 50-100 ч на специальном топливе, содержа­щем большое количество тяжелых фракций. После наработки нагара двигатель разбира­ли и оценивали количество и распределение образовавшегося нагара в камере сгорания (на головке блока цилиндров), на днище поршня и распылителе форсунки. Нагар отлагался на по­верхностях в виде очень плотного слоя неравномерной толщины — до одного и более милли­метров. Толщина основной массы нагара на го­ловке блока цилиндров и днище поршня дости­гала 0,5 мм. Что касается форсунки, то около двух третей массы нагара имело толщину от 0,5 до 1,3 мм. Это обстоятельство представля­ется весьма существенным, так как отложения на форсунке в наибольшей степени влияют на токсичность отработавших газов [2]. После на­работки нагара двигатель собирали и проводи­ли нагароочистку в течение 5 ч, работая на стандартном дизельном топливе Л с присадкой. При введении в топливо присадки в концентрации 0,02-0,05%, нагар удалялся на 25-65' (рис. 4).

  Часть нагара, которая не была удален в процессе испытаний, изменила свою природ; Нагар стал рыхлым и легко снимался притиранием поверхности без соскабливания и кипячения. Наибольший эффект наблюдался на распылителе форсунки, где при концентрации пру садки 0,02% в условиях испытаний нагар удалялся наполовину. Интересно отметить, что степень удаления нагара с форсунки и поршня достигала максимума при 0,05% присадки, а из камеры сгорания почти линейно зависела от е концентрации. Несмотря на то, что медьсодер­жащие соединения за рубежом ус­пешно используют в качестве ан­тисажевых присадок к дизельно­му топливу, остается открытым во­прос о влиянии меди на топливо и о токсичности продуктов сгорания присадки, выбрасываемых с отра­ботавшими газами. Известно, что соединения ме­ди являются сильными промото­рами окисления углеводородов. По­этому было проверено влияние присадки на термостабильность дизельного топлива методом ква­лификационной оценки Установле­но, что после нагрева в течение 16 ч образцов топлива при 100°С их цвет не изменился, а количест­во осадка и кислотность возросли незначительно (см. таблицу). Следует, однако, заметить, что при оценке термостабильности данным методом топливо контактирует со специ­ально вводимой в него медной пластин­кой. Таким образом, введение дополните­льного количества меди в топливо может просто не быть замечено. Поэтому, веро­ятно, стабильность топлив с медьсодер­жащими присадками подлежит более подробному изучению. Кроме того, при­садки этого типа должны вводиться в топливо непосредственно на месте при­менения, а топлива с присадками не по­длежат длительному хранению. С другой стороны, в состав присадки может быть добавлено некоторое количество деактиватора металла, связывающего медь в неактивный комплекс Что касается токсичности продуктов сгорания топлива с присадкой, то мож­но привести приблизительный расчет. При максимальной рекомендуемой концентрации присадки в топливе, равной 0,05%, содержание меди в топливе составит около 70 млн"1. Можно допустить, что при сгорании 1 кг дизельного топлива при а = 2 образуется 25-30 л отработавших газов; содержание меди в них составит около 2-3 мг/м3. В России нет норм на содержание меди в отработавших га­зах, но можно привести норму Агентства охра­ны окружающей среды США, составляющую 100 мг/м3 [3]. Обычно принимают, что отрабо­тавшие газы разбавляются воздухом в тысяче­кратном соотношении. Продукты сгорания ме­ди выбрасываются из двигателя в виде аэрозо­лей оксидов, сульфатов и карбонатов. Их ПДК

  в воздухе рабочей зоны, принятая в России, со­ставляет 0,5 мг/м3. Среднее содержание меди в земной коре составляет около 0,005% мае. Та­ким образом, можно полагать, что при исполь­зовании медьсодержащей антинагарной присад­ки опасных для здоровья концентраций меди не возникнет. Присадка антикокс может представлять практический интерес не только как препарат для удаления нагара с деталей двигателя, но и в качестве антисажевого агента в связи с планируемой установкой сажевых фильтров. 2.3Противоизносные свойства  дизельных топлив. Дизельные топлива являются смазочным ма­териалом для движущихся деталей топливной аппаратуры быстроходных дизелей, трущихся пар плунжерных топливных насосов, запорных игл, штифтов и др. На поверхностях трущихся пар при контакте с топливом образуется гра­ничный слой, обладающий специфическими свойствами. Этот очень тонкий граничный слой (толщина меньше 1 мкм) выполняет функцию смазочной пленки. Он предотвращает непосред­ственный контакт поверхностей трения, при этом уменьшаются сила трения и износ тру­щихся деталей. Присутствующие в топливах молекулы гетероатомных соединений серы, кислорода или азота, имея постоянный дипольный момент, при­тягиваются поверхностью металла, строго ори­ентируются в слоях и создают смазочную плен­ку, которая уменьшает трение и износ. Смазывающие свойства топлив значитель­но хуже, чем у масел, так как и вязкость, и содержание ПАВ в топливах меньше, чем их содержание в маслах.    Противоизносные свой­ства топлив улучшаются с увеличением содер­жания ПАВ, вязкости и температуры выкипа­ния [1]. В связи с ужесточением требований к каче­ству дизельных топлив по содержанию серы и  переходом на выработку экологически чистых топлив, гидроочистку их проводят в жестких условиях. При этом из дизельных топлив уда­ляются соединения, содержащие серу, кисло­род и азот, что негативно влияет на их смазы­вающую способность. Опыт использования ди­зельного топлива с содержанием серы 0,005% в Швеции, наряду с положительными момента­ми — снижением содержания вредных веществ в выхлопных газах, выявил негативные послед­ствия — преждевременный выход из строя то­пливных насосов из-за снижения смазывающей способности дизельного топлива. Высокий уро­вень износа отмечен уже после 5000 км пробе­га, кроме того, имела место тенденция к увели­чению заедания деталей насоса. Исследования, проведенные в США и Германии, также пока­зали низкую смазывающую способность и пло­хие противоизносные характеристики малосер­нистых дизельных топлив, в результате чего возникали поломки инжекторных насосов [2,3]. Компания Shell провела исследования по изучению вопроса о соответствии характери­стик топлив условиям их применения, при этом, исходя из имеющегося опыта использования авиационного керосина, основное внимание бы­ло уделено смазывающей способности топлива. Программа исследований наряду с дорожными и стендовыми испытаниями на долговечность топливного оборудования включала фундамен­тальные лабораторные исследования смазываю­щей способности топлив. По существу, имеются три возможности улучшения смазывающих способностей дизель­ных топлив: использование нестандартных условий про­ведения процесса гидроочистки, которые сво­дят к минимуму удаление важных компонен­тов; смешение дизельных топлив с продуктами с высоким содержанием природных компонен­тов, обеспечивающих высокую смазывающую способность в условиях граничной смазки; использование присадок, придающих топ­ливу дополнительные противоизносные свойст­ва. Для малосернистого топлива использование двух первых возможностей улучшения смазы­вающих характеристик является неприемле­мым, так как получаемое в этих случаях топ­ливо не соответствует строгим техническим стандартам. Поэтому использование присадок является наиболее реальным способом. Анализ патентных данных показал, что для улучшения противоизносных характеристик ди­зельных топлив предлагается большое количе­ство химических соединений, принадлежащих к различным классам. Так, в качестве противо­износных присадок испытывались сложные эфиры ди- и монокарбоновых кислот и ди- и полиатомных спиртов, соединения, содержащие серу, фосфор, азот, бор и другие гетероатомы, а также другие классы химических соедине­ний [4-9]. Хотя в принципе существует много вариантов повышения смазывающей способности ди­зельных топлив с помощью присадок, на прак­тике их выбор достаточно узок. Большинство противоизносных присадок, применяемых в мо­торных и индустриальных маслах, слишком аг­рессивны в топливах. Кроме того, многие из этих присадок содержат серу, что делает нежела­тельным их применение в экологически чистых дизельных топливах, или фосфор, отрицатель­но влияющий на систему очистки выхлопных газов. При решении проблемы подбора эффектив­ной присадки авторами статьи поставлена за­дача использования только тех присадок, кото­рые могут придать топливам смазывающую спо­собность на уровне, характерном для дизель­ных топлив с содержанием серы — 0,2% мае. И ароматики 25-30% мае. Смазочную способность дизельных топлив оценивали на вибрационном трибометре SRV фирмы Optimol [10], используемом для оценки процессов трения и износа смазочных материа­лов. Прибор позволяет оценивать изменение ко­эффициента трения в процессе испытания в за­висимости от нагрузки, скорости скольжения, длительности испытания и температуры в ус­ловиях граничного режима трения. Для дизельных топлив были специально по­добраны условия испытаний. Оценочными по­казателями при испытании дизельных топлив были: диаметр пятна износа, коэффициент тре­ния и удельная нагрузка. Лучшими противоизносными свойствами обладают образцы, имею­щие низкий коэффициент трения, малый диа­метр пятна износа и высокую удельную нагрузку. В качестве присадок, улучшающих противоизносные свойства дизельных

  топлив, испы­таны сложные эфиры пентаэритрита и синте­тических монокарбоновых кислот фр. С5-Сд I эфир ПЭТ), сложные эфиры 2-этилгексанола л себациновой кислоты (эфир ДОС), сложный эфир пентаэритрита, себациновой и акриловой кислот (эфир ПАС), нафтеновые кислоты, а так­же некоторые зарубежные присадки, рекомен­дуемые фирмами.

  Результаты этих исследований представле­ны в табл. 1, 2. Из представленных в табл. 1 результатов видно, что наиболее эффективны нафтеновые кислоты в концентрации 0,05% мае. Использо­вание эфира ПЭТ приводит к ухудшению противоизносных свойств, а введение эфиров ДОС ■ ПАС практически не влияет на смазочные характеристики топлива. Результаты испытаний на приборе SRV не­которых зарубежных присадок (см. табл. 2) по­казывают, что присадки Paradyne 639 и Paradyne 655 практически не влияют на противоизносные характеристики исходного ди­зельного топлива. Введение присадки CD-2 да­же в малых концентрациях (0,0001% мае.) уменьшает коэффициент трения и увеличива­ет удельные нагрузки. Настоящие исследования позволили уста­новить принципиальную возможность улучше­ния противоизносных свойств экологически чис­тых дизельных топлив с помощью присадок. По­иск эффективных противоизносных добавок, имеющих достаточно широкую сырьевую базу и относительно невысокую стоимость, продол­жается. 2.4Влияние качества дизельных топлив на их противоизносные свойства. С проблемами ухудшения противоизносных свойств топлив столкнулись в 70-х годах при ис­пользовании реактивных топлив, подвергнутых жесткой гидроочистке. Тогда же было установ­лено, что существенное влияние на противоизносные свойства товарных реактивных топлив ока­зывают не только сернистые соединения, но и фракционный состав, вязкость топлива. Удале­ние естественных гетероорганических соедине­ний из прямогонных реактивных топлив (серно­кислотная, адсорбционная, гидроочистка) значи­тельно ухудшало их противоизносные свойства. При исследовании влияния содержания серы на противоизносные свойства реактивных топлив было установлено, что существует определенный оптимум, при котором достигается максималь­ный уровень противоизносных свойств топлива (рис. 1)[1], Добавление сернистых соединений в количе­стве 0,05-0,15% вызывало снижение износа, а уве­личение содержания серы более 0,15% приводи­ло к увеличению износа металла. Тиофены ока­зывали положительное влияние на противоиз­носные свойства реактивных топлив. При содер­жании тиофеновой серы порядка 0,15-0,25% мае. износ металла уменьшается на 25-35%. Как по­казали проведенные исследования [2], меркапта­ны и дисульфиды в концентрации 0,001% мае. не ухудшали противоизносные свойства реактив­ных топлив. В более высокой концентрации мер­каптаны оказывали отрицательное влияние на противоизносные свойства топлив. Исследование влияния углеводородного со­става реактивных топлив на их противоизносные свойства показало ухудшение противоизносных свойств в ряду: бициклические ароматические углеводороды, нафтеновые, парафиновые [3].  Противоизносные свойства дизельных топ­лив изучены мало. Оценку их проводили, в основ­ном, путем замера износов плунжеров полноразмерной топливной аппаратуры. Однако в после­дние годы при использовании экологически чис­того дизельного топлива, прежде всего в Европе, был отмечен высокий уровень износа топливных инжекторных насосов, приводящий к выходу их из строя. Причиной этого стало снижение смазы­вающей способности топлив. Для исследования влияния глубины гидро­очистки на противоизносные свойства дизельных топлив были специально приготовлены образцы дизельного топлива с различным содержанием серы — 0,05; 0,1; 0,2% мае. (табл. 1)Топлива име­ли близкие значения по показателям вязкости, плотности, содержанию и составу ароматических углеводородов, что исключало влияние их на про­тивоизносные свойства топлив, лишь образец с содержанием серы 0,2% имел более низкую 50%-ную точку перегонки — 256°С против 275 и 277°С для образцов с содержанием серы 0,05 и 0,1%, со­ответственно, так как для поддержания на одном уровне всех остальных свойств в его состав при­шлось вовлечь фракции керосина. Все образцы соответствовали ГОСТ 305-82.

 

  Смазывающую способность исследуемых ди­зельных топлив оценивали на вибрационном трибометре SRV фирмы Optimol, предназначенном для оценки процессов трения и износа [3]. Рабо­чая часть трибометра представляет собой каме­ру, где находится узел трения пластина – шар. Прибор позволяет оценивать изменение коэффи­циента трения в процессе испытания в зависи­мости от нагрузки, скорости скольжения, дли­тельности измерения и температуры в условиях граничного режима трения. В результате проведенных исследований были выбраны оптимальные условия испытаний дизельных топлив: время испытаний — 60 мин; нагрузка — 5 кгс. Оценочными показателями яв­лялись величины диаметра пятна износа, коэф­фициента трения и удельная нагрузка. Лучши­ми противоизносными свойствами обладают об­разцы, имеющие низкий коэффициент трения, малый диаметр пятна износа и высокую удель­ную нагрузку. За рубежом оценка противоизносных свойств дизельных топлив проводится на приборе HFRR на узле трения пластина — шар. При испытании на приборе HFRR дизельные топлива должны характеризоваться уровнем противоизносных свойств не более 460 мм. Результаты испытаний дизельных топлив с различным содержанием серы на приборе SRV представлены в табл. 2Ц Из приведенных данных видно, что с увели­чением содержания серы с 0,01 до 0,5% улучша­ются противоизносные свойства дизельных топ­лив. Так, диаметр пятна износа и коэффициент трения уменьшаются на 68 и 75% соответствен­но, при этом удельные нагрузки увеличиваются в 10 раз. За рубежом критерием оценки противо­износных свойств является уровень показателей, значения которых характерны для дизельного топлива с содержанием серы 0,2% мае. Исследование экологически чистых дизель­ных топлив различных нефтеперерабатывающих заводов показало (рис. 2, 3), что на противоизнос­ные свойства дизельных топлив большое влия­ние оказывает не только содержание серы, но и фракционный состав, особенно конец кипения топлива, а также его вязкость. С повышением температуры конца кипения топлива снижается диаметр пятна износа и ко­эффициент трения. При этом средняя темпера­тура кипения топлива (50%-ная точка перегонки) не оказывает заметного влияния на противоиз­носные свойства. Снижение вязкости с 5,3 до 3,7 мм2/с приводит к ухудшению противоизносных свойств: увеличивается диаметр пятна из­носа и коэффициент трения. С целью установления влияния ароматичес­ких углеводородов на противоизносные свойства исследован легкий газойль каталитического кре-

кинга с установки Г-43-107 — основной компо­нент товарных дизельных топлив. Для этого лег­кий газойль каталитического крекинга был под­вергнут адсорбционному разделению на арома­тические соединения I, II, III и IV группы. Учитывая, что в 1999 г. в Европейский стандарт на ди­зельные топлива будет внесена норма на содер­жание полициклических ароматических углево- дородов, были исследованы, прежде всего, аро­матические соединения III и IV групп. Они добав­лялись в гидроочищенное дизельное топливо (сы­рьем гидроочистки служили только прямогонные дизельные фракции) в количестве, соответству­ющем содержанию легкого газойля в дизельном топливе 20 и 40%.

  Как видно из представленных на рис. 4 данных, добавление ароматических углеводородов группы улучшает противоизносные свойства дизельного топлива с содержанием серы 0,05%. Ароматические углеводороды IV группы в кон­центрациях, соответствующих содержанию лег­кого газойля в дизельном топливе до 20%, также уменьшают диаметр пятна износа и коэффици­ент трения. При этом ароматические углеводоро­ды IV группы оказывают большее влияние на противоизносные свойства. Дальнейшее увеличе­ние концентрации ароматических углеводородов группы приводит к ухудшению противоизносных свойств дизельного топлива. Таким образом, в результате проведенных исследований было установлено, что противоиз­носные свойства дизельных топлив зависят от содержания серы, фракционного состава и вяз­кости топлива. Положительное влияние на про­тивоизносные свойства оказывают ароматичес­кие углеводороды III и IV групп, присутствие ко­торых являются нежелательным в перспектив­ных экологически чистых дизельных топливах.

Список литературы: 1.     Митусова Т.Н., Полина Е.В., Калинина М.В.Исследование противоизносных свойств топлив// Нефтепереработка и нефтехимия: НТИЦЭнефтехим, 1998.-№2.-С. 20-22. 2.      Митусова Т.Н., Полина Е.В., Калинина М.В.Исследование противоизносных свойств топлив// Нефтепереработка и нефтехимия: НТИЦЭнефтехим, 1999.-№4.-С.8-11. 3.     Гуреев А.А., Азеев В.С., Камфер Г.М. Топливо для дизелей. Свойства и применение.-М.: Химия, 1993. 4.     Т.Н. Митусова, Е.В. Полина, М.В. Калинина. Современные дизельные топлива и присадки к ним — М.: Издательство «Техника». ООО «ТУМА ГРУПП», 2002. — 64 с  

www.ronl.ru

автомобильный бензин, влияние плотности бензиновой смеси на работу двигателя и токсичность выхлопа

7. влияние плотности бензиновой смеси на работу двигателя и токсичность выхлопа.

Быстрее всего бензин сгорает в обогащенной смеси. Но при прочих равных условиях: давлении и опережении зажигания. А вот, к примеру, поднимаясь в горы, на высоте в несколько километров появляются все признаки обеднения смеси: двигатель заметно теряет мощность, начинает перегреваться. Но дело здесь не в изменении состава смеси - она остается прежней, а в уменьшении её плотности в результате уменьшения атмосферного давления.

Плотность поступающей в цилиндры горючей бензиновой смеси уменьшается не только в горах. Гораздо сильнее это уменьшение в результате гидравлических потерь при прохождении смесью впускного клапана и, главное прикрытой дроссельной заслонки. Ведь чем больше она прикрыта, тем меньшим количеством смеси заполняются цилиндры при их неизменном объеме. Значит, с уменьшением открытия дроссельной заслонки горение смеси замедляется, хотя её состав остается прежним.

Для того чтобы компенсировать замедление горения, бензиновую смесь необходимо раньше поджечь, и эту функцию выполняет вакуумный регулятор опережения зажигания. Но двигатель, в зависимости от нагрузки, может работать при режимах, на которых разрежение одинаковое, а частота вращения разная. В этом случае при большой частоте вращения горение закончится позже, когда поршень уже пройдет определенную часть рабочего хода, т. е. выделенное при сгорании топлива тепло будет использовано не полностью. Значит, чем выше частота вращения, тем раньше нужно поджечь горючую смесь, за это в автомобиле отвечает центробежный регулятор опережения зажигания.

Самое сильное уменьшение плотности смеси происходит на холостом ходу, и поэтому минимальную частоту вращения двигателя можно получить при обогащенной смеси, ибо нормальная и тем более обедненная смесь такой плотности гореть не будет. Именно так и регулировали холостой ход, пока не были введены ограничения на токсичность отработавших газов.

С точки зрения скорости горения повышение октанового числа автомобильного бензина в какой-то мере эквивалентно снижению плотности или обеднению горючей бензиновой смеси, хотя природа этого снижения абсолютно иная.

Интересным является тот факт, что, к примеру, дизели работают только на бедной смеси, поэтому они менее токсичны чем бензиновые. Однако высокая экономичность дизеля объясняется не обеспечением полного сгорания топлива, а совсем другими причинами.

В 60-х годах прошлого столетия в ряде стран были введены ограничения на токсичность выхлопа. На территории бывшего СССР государственное нормирование токсичности выхлопа было впервые введено в 1970г., но с тех пор ограничительный стандарт неоднократно пересматривался как в сторону ужесточения установленных норм, так и добавления ограничения по окислам азота, которого в самом первом стандарте не было совсем.

Основные токсичные компоненты выхлопа - это окись углерода СО, окислы азота NO2 и углеводороды СН. Кроме тог, в воздух могут вылетать соединения свинца, сернистый газ, сероводород, альдегиды и канцерогенные вещества (наличие двух последних может быть в выхлопе дизелей и изношенных бензиновых двигателей

Окись углерода образуется при работе двигателя на богатой и обогащенной смеси на холостом ходу и при включении экономайзера.

Окислы азота образуются в результате воздействия высокой температуры на воздух, в котором имеется избыток кислорода, т.е. при работе двигателя на обедненной смеси при достаточно высокой нагрузке. Мероприятия по повышению полноты и эффективности сгорания сопровождаются ростом температуры в цилиндрах двигателя (увеличение степени сжатия, установка оптимального угла опережения зажигания), что дает не только снижение расхода бензина, но и одновременно значительное повышение выброса окислов азота. Из выхлопной трубы в основном вылетает окись азота NO, которая на воздухе быстро окисляется и превращается в ядовитую двуокись азота NO2 . Это вещество действует на дыхательные пути, а при взаимодействии с водой образует азотную кислоту.

В воздухе окислы азота могут образовывать удушливый фотохимический смог, поэтому санитарные нормы содержания окислов азота в воздухе в десятки раз жестче, чем окиси углерода.

Углеводороды - не что иное, как пары несгоревшего бензина. Их выбросы имеют место при работе на богатой и обогащенной смеси, при пуске холодного двигателя и при пропусках воспламенения в цилиндрах. Присутствие CH в выхлопе можно легко обнаружить без приборов, по запаху несгоревшего бензина. Сами по себе углеводороды не ядовиты, но они при определенных атмосферных условиях способствуют образованию смога.

www.reduktorvaz.narod.ru