Основы технологического процесса получения моторного топлива. Технологический процесс производства бензина


Основы технологического процесса получения моторного топлива

Особенностью нефти, которая имеет в своем составе разнообразные углеводороды, является широкий температурный диапазон выкипания. Так, при нагреве до 30–40 °С из нефти начинают испаряться наиболее легкие углеводороды. С повышением температуры состав выкипающих углеводородов становится тяжелее. Это позволяет разделить нефть на части или фракции, выкипающие в определенных температурных пределах. Получаемые продукты называют дистиллятами, а сам процесс – прямой перегонкой нефти, которая относится к физическому способу переработки нефти. На рисунке 1 представлены продукты, получаемые из сырой нефти. Из этого ряда продуктов, применительно к транспорту, можно выделить дистилляты со следующими пределами выкипания: бензиновый – 30÷205 °С; лигроиновый – 110÷230 °С; керосиновый – 120÷315 °С; газойлевый – 230÷330 °С; соляровый – 280÷380 °С; масляный – 320÷500 °С [1].

Прямая перегонка является первичным и обязательным процессом переработки нефти в топлива и масла. Она осуществляется путем испарения нефти в трубчатых печах с последующим разделением фракций в ректификационных колоннах. Для этого в трубчатой печи нефть нагревается до температуры 330÷350 °С и затем подается в ректификационную колонну. Жидкий остаток стекает вниз, а углеводородные пары поднимаются вверх и конденсируются по пути в виде дистиллятов на так называемых ректификационных тарелках. Эти тарелки установлены на различной высоте колонны. На первых тарелках конденсируются тяжелые углеводороды, несколько выше – более легкие. Наиболее легкие углеводороды отводятся с верха колонны в газообразном виде. Причем можно отобрать в одну группу фракции, у которых температура кипения отличается всего лишь на 5–6 °С [2].

Самые легкие фракции (в данном случае бензиновые) могут не сконденсироваться полностью и при достижении верхних тарелок. Их отбирают из колонны в парообразном виде и пропускают через конденсатор-холодильник, где они конденсируются.

На промышленных установках перегонка нефти вначале проводится при атмосферном давлении, а затем в вакууме. При атмосферной перегонке нефть нагревается не выше 370°С, так как при более высокой температуре начинается расщепление углеводородов (крекинг), а это ведет к образованию непредельных углеводородов, что снижает качество и выход целевых продуктов.

 

Рис.1. Продукты, получаемые из нефти.

 

Таким образом в результате атмосферной перегонки нефти отгоняются фракции, выкипающие примерно от 30 до 350÷360 °С, и в остатке оказывается мазут, который может подвергаться дальнейшему разделению на установках крекинга либо использоваться в качестве топлива (топочный мазут).

Прямая перегонка нефти обеспечивает лишь ограниченное количество топливных дистиллятов, не удовлетворяющих постоянно растущий спрос на моторное топливо. Большинство составов нефти содержит 15–20 % бензиновых дистиллятов и 45–55 % приходится на долю остальных топлив. Поэтому для получения большего количества (увеличения выхода) моторных топлив (в первую очередь бензинов) используются методы химической переработки нефти, получившие название вторичных процессов.

Наибольшую известность получил крекинг-процесс, заключающийся в расщеплении крупных молекул углеводородов под действием высоких температур (термический крекинг) или в присутствии катализатора (каталитический крекинг) и превращение их в легкокипящие углеводороды, из которых состоят бензин и другие светлые нефтепродукты.

Крекинг не только увеличивает выход бензина непосредственно из нефти, но также дает возможность получать его из керосина, соляро-газойлевых фракций и даже мазута. При крекинге последнего можно получить около 30 % бензина, а в целом выход бензина при переработке нефти может быть доведен до 70 %.

При термическом крекинге (бензин получают из мазута, керосина, дизельного топлива) процесс происходит под действием температуры 520÷550 °С и при давлении 0,2÷0,6 МПа (парофазный крекинг) или же при несколько меньшей температуре 480÷500 °С, но более высоком давлении порядка 2,0÷5,0 МПа (жидкофазный крекинг). Жидкофазный термический крекинг обеспечивает более высокий выход бензина с меньшим содержанием непредельных углеводородов в нем, поэтому является более совершенным.

Основным недостатком термического крекинга является наличие в продуктах переработки до 30–40 % непредельных углеводородов. Поэтому бензин термического крекинга обладает плохой стабильностью и при хранении интенсивно осмоляется и окисляется. Октановые числа (ОЧ) находятся в пределах 66 – 74 единиц, поэтому его используют в качестве компонента при получении товарных бензинов.

Более совершенным является каталитический крекинг. При каталитическом крекинге расщепление тяжелых молекул углеводородов нефти происходит при температуре 430÷530 °С, давлении, близком к атмосферному (0,07÷0,3 МПа), и в присутствии катализатора. В качестве сырья используют газойлевую и соляровую фракции, а в качестве катализатора обычно применяются алюмосиликаты (75÷80 % окиси кремния – SiO2 и 10÷20 % окиси алюминия – А12О3). Бензины каталитического крекинга имеют более высокую детонационную стойкость и химическую стабильность. С помощью каталитического крекинга получают бензин с ОЧ до 85 единиц (моторный метод), который используется при производстве бензина А-76 и керосиногазойлевые фракции, используемые в качестве реактивного и дизельного топлива. Выход бензиновых фракций составляет 40–45 %.

Для переработки средних и тяжелых нефтяных дистиллятов с большим содержанием сернистых и смолистых соединений, не пригодных для переработки чисто каталитическим способом, большое распространение получил каталитический крекинг в присутствии водорода, так называемый гидрокрекинг. Он осуществляется при температурах 350÷450 °С, давлении водорода 15÷17 МПа и расходе его 170÷350 м3 на 1 м3 сырья. Применение водорода обеспечивает эффективное гидрирование на катализаторе (алюмокобальтомолибденовом или алюмоникельмолибденовом) высокомолекулярных и сернистых соединений с их последующим распадом. Благодаря этому выход светлых продуктов повышается до 70 % (в пересчете на нефть), значительно снижается содержание серы и непредельных углеводородов. Гидрокрекинг позволяет получить из керосино-соляровых фракций, вакуумных дистиллятов и остаточных продуктов бензины, реактивные и дизельные топлива. Октановое число бензиновых фракций составляет 85–88 единиц по исследовательскому методу.

Для улучшения одного из важнейших эксплуатационных свойств бензина – стойкости к детонации – используются процессы риформинга. Различают два вида риформинга: термический и каталитический. Наиболее широкое применение в промышленности нашел каталитический риформинг, позволяющий из прямогонного бензина получить риформинг-бензин. Этот бензин содержит значительное количество (65–75 %) ценных ароматических углеводородов, что позволяет использовать их для повышения детонационной стойкости товарных бензинов.

Каталитический риформинг протекает в среде водорода при температуре 500÷540 °С, давлении 1,5÷4,0 МПа и в присутствии катализатора. В качестве катализатора промышленное применение получила платина на окиси алюминия, отчего такой процесс получил название – платформинг. Основная продукция этого процесса – катализат, используемый в качестве высоко-октанового компонента автомобильного бензина. Его выход составляет до 85 %, а ОЧ – 95 единиц по исследовательскому методу.

Автомобильное топливо, полученное одним из указанных способов, должно быть очищено от органических (нафтеновых) кислот, смолистых и асфальтовых веществ, сернистых соединений, а также должно быть подвергнуто стабилизации для повышения его химической и физической стойкости во время транспортирования, хранения и потребления, тем самым будут улучшены эксплуатационные свойства нефтепродуктов.

Способы очистки топлива. Существует несколько способов очистки топлива.

Например, для удаления сернистых, азотистых, кислородных, металлоорганических и непредельных соединений используется гидроочистка. В процессе гидроочистки данные соединения путем реакции с водородом переводятся в газообразные, легко удаляющиеся продукты. Она проводится при температуре 350÷420 °С и давлении 1,7÷4,0 МПа в присутствии катализаторов. Содержание серы в топливе снижается в 10÷20 раз.

Для удаления из топливных дистиллятов некоторых кислородных и сернистых соединений применение находит также очистка щелочью. Этот процесс заключается в добавлении щелочи в очищаемый нефтепродукт с последующим удалением водным раствором образующихся веществ совместно с остатками щелочи.

При переработке нефти в получаемых высококипящих топливных дистиллятах содержится большое количество соединений, которые ухудшают эксплуатационные свойства нефтепродуктов при пониженных температурах. Для удаления этих углеводородов при производстве дизельных топлив зимних сортов распространение получила так называемая карбамидная депарафинизация. Этот метод основан на свойстве карбамида (мочевины) образовывать кристаллические комплексные соединения с парафинами, которые достаточно просто отделяются от остальных углеводородов путем фильтрации. Очищенное таким образом топливо сохраняет текучесть до –60 °С.

Кислотно-щелочная очистка состоит в последовательной обработке топлива серной кислотой (h3SO4), щелочью (NaOH) и промывке водой. Серная кислота взаимодействует с сернистыми соединениями (кроме сероводорода и свободной серы) и непредельными углеводородами, а с помощью едкого натрия удаляются органические кислоты, сероводород и кислые соединения, частично оставшиеся после обработки серной кислотой. Количество серной кислоты составляет 0,5÷1,5 %, едкого натрия – 0,07÷0,15 % от количества очищаемого топлива.

Промывка водой необходима для удаления остатков солей, образовавшихся при воздействии щелочи.

Очистка отбеливающими глинами основана на способности последних избирательно поглощать (адсорбировать) кислые соединения, смолистые вещества и легкоокисляющиеся и осмоляющиеся непредельные углеводороды, что особенно важно при очистке крекинг-бензинов. Для малосернистых топлив этот метод является основным. Потери бензина при очистке отбеливающими глинами меньше, чем при кислотно-щелочной очистке, а качество более высокое. В качестве реагентов, используемых при очистке бензинов, применяется хлористый цинк, хлористая медь и другие вещества.

Очистка и вторичные процессы существенно улучшают эксплуатационные свойства топлив, однако недостаточны для удовлетворения всех требований двигателей современных автомобилей. Поэтому на заключительном этапе производства топлива после смешения (компаундирования) продуктов прямой перегонки и вторичных процессов осуществляется добавление различных присадок, улучшают один или ряд показателей эксплуатационных свойств нефтепродуктов, например детонационной стойкости.

В итоге, полученное таким образом топливо называется товарным, т. е. это то топливо, которое поступает в автохозяйства и на автозаправочные станции (АЗС) [1, 3].

Топлива из природного газа. Из природного газа топливо для автомобилей может быть получено тремя различными способами. Простейшим способом является сжатие газа до давления 20÷25 МПа для обеспечения приемлемого запаса хода автомобиля.

Сжатие природного газа осуществляется с помощью стационарных или передвижных компрессорных станций. Природный газ может использоваться и в жидком виде. Сжижение газа осуществляется на холодильных установках путем его глубокого охлаждения до –162 °С. Наконец, с помощью специальных химических процессов конверсии и синтеза из природного газа могут быть получены жидкие углеводороды или метанол (метиловый спирт), используемые в качестве моторных топлив либо добавок к бензину.

Одним из видов альтернативных топлив является сжиженный пропанобутановый газ. Это топливо получают выделением смеси пропана и бутана из попутного нефтяного, природного и нефтезаводского газов с помощью методов умеренного охлаждения и газофракционирования.

Производство моторных топлив из угля включает следующие основные стадии: подготовка твердого сырья к переработке (сушка, дробление, полукоксование (нагрев до 550÷600 °С) или коксование (нагрев до 800÷1200 °С), т. е. получение промежуточного продукта – смолы, отделение углеводородной части путем фракционной разгонки, очистка и др.), газификация или гидрогенизация и переработка получаемых продуктов в топливо.

В процессе газификации из угля получают газообразную смесь, из которой затем с помощью химических реакций синтеза в присутствии катализаторов могут быть получены жидкие углеводороды или метанол. По такой схеме на заводе фирмы «Сасол» (Южно-Африканская Республика) ежегодно производится около 4 млн. т бензинов и дизельных топлив. На получение каждой тонны моторных топлив расходуется около 6÷7 т угля. В результате их производства образуются побочные продукты в виде сжиженного нефтяного газа и парафина. Данная технология получения автомобильных топлив называется методом Фишера-Тропша.

Значительно больший выход бензина, чем при газификации, может быть получен, если бурый или каменный уголь подвергнуть специальной переработке – деструктивной (химической) гидрогенизации. Выход бензина при этом составляет до 60 % веса угля. За счет соответствующего сокращения выхода бензина этим способом можно получить до 35 % дизельного топлива. Деструктивная гидрогенизация углей является сложным и дорогостоящим технологическим процессом. Перерабатываемый уголь измельчается в смеси с маслом. Процесс протекает при высоких температурах и давлениях в присутствии катализаторов и с использованием водорода. В результате получается синтетическая нефть, из которой с помощью известных процессов нефтепереработки могут быть выработаны различные моторные топлива. Из 3 т угля получается 1 т синтетической нефти.

Автомобильный бензин и дизельное топливо могут быть также получены синтезом из окиси углерода (СО) и водорода (Н2), входящих в состав водяного газа, т. е. генераторного газа с высоким содержанием водорода. В свою очередь, генераторный газ получают путем газификации твердых горючих ископаемых, в присутствии некоторого количества (недостаточного для полного сгорания) воздуха и водяного пара или водяного пара и кислорода.

Водяной газ подвергается нагреванию до 180÷210 °С и пропусканию через реактор с катализатором при атмосферном или повышенном давлении (0,1÷ 0,2 МПа). В этих условиях окись углерода и водород образуют различные углеводороды, из которых в дальнейшем путем фракционной разгонки получают бензин и дизельное топливо.

С целью получения жидкого топлива из торфа его подвергают термическому растворению в органических растворителях. Результатом является торфяная смола, которая подвергается прямой перегонке и последующей очистке. Общий выход бензина составляет 3÷4 % в расчете на сухой торф с октановым числом 80.

Горючие сланцы также подвергают термической переработке с получением сланцевой смолы, которую используют в качестве жидкого сырья для получения моторных топлив.

Наиболее распространенным способом получения моторных топлив из возобновляемого растительного сырья – биомассы – является ферментация (брожение). В процессе брожения получают жидкую смесь, содержащую значительное количество этанола (этилового спирта) и воды. После очистки и удаления воды этот продукт может использоваться самостоятельно в качестве моторного топлива либо добавляться к обычным нефтяным топливам.

Таким образом, в Бразилии и США из сахарного тростника и пшеницы получают метанол.

Автомобильным топливом будущего называют водород. В больших количествах водород может быть получен из воды с помощью электролиза. Многие из этих процессов требуют больших затрат электроэнергии и связаны с высокой стоимостью получаемого топлива.

Похожие статьи:

poznayka.org

Бензин. Технология производства.

Процесс производства современного бензина далеко не так прост, как иногда кажется. Если просто перегнать нефть, то полученная бензиновая фракция будет обладать крайне низким октановым числом (на уровне 55 – 60 ед. по моторному методу). Этот бензин называется прямогонным и не может быть использован напрямую в автомобильном двигателе как ввиду низкого октанового числа, так и из-за высокого содержания серы, строго нормируемого современными экологическими стандартами.

Такой бензин имеет два пути: его могут отправить на нефтехимические предприятия, где из него после целого ряда превращений будут изготовлены различные полимеры, растворители и химические волокна. Или же бензин может подвергнутся дальнейшим превращениям на специальных установках НПЗ, в результате чего его качество значительно улучшиться. Об этих установках расскажем более подробно:

Риформинг

Сырьем для каталитического риформинга является прямогонная бензиновая фракция, выкипающая в пределах от 80 до 180°С, очищенная от серы. Часто установка гидроочистки комбинируется с установкой риформинга в одну. Переходя через последовательные реакторы, заполненные катализатором с содержанием платины под воздействием высокой температуры 490-530°С и давления до 3 Мпа, образуются высокооктановые ароматические углеводороды – ценный компонент бензина. Также в процессе образуется значительное количество водорода, который используется на НПЗ для очистки от серы не только бензиновых, но и дизельных фракций.

Процесс риформинга долгое время являлся основным процессом для получения высокооктановых бензинов. Но современными экологическими стандартами содержание ароматики в бензине ограничено 35%, поэтому производители топлива вынуждены использовать и другие способы повышения октанового числа.

Изомеризация

Другим распространенным процессом производства высокооктановых фракций является изомеризация алканов. Нормальные неразветвленные алканы обладают намного меньшей детонационной стойкостью, чем алканы с изостроением. Так, например, октановое число н-пентана составляет 61,8 ед. по моторному методу, а его изомер – изопентан имеет октановое число уже 93 ед.! В наиболее часто применяющейся изомеризации с рециклом на специальных катализаторах при давлении 2-3 Мпа и температуре до 400 градусов легкие алканы превращаются в свои изомеры, применяемые для производства бензинов АИ-92 и АИ-95.

Алкилирование

Самым современным процессом для получения высокоокачественных компонентов бензина является алкилирование. Процесс алкилирования направлен на получение высокооктановых компонентов автомобильного бензина из непредельных углеводородных газов. Не смотря на сложность процесса и применение серной или фтористоводородной кислоты в процессе производства, качество получаемого продукта оправдывает все трудности.

Каталитический крекинг

Все перечисленные выше процессы направлены в первую очередь направлены на улучшение имеющегося сырья. Каталитический крекинг в отличие от них позволяет значительно увеличить объем выпускаемого бензина. В процессе каталитического крекинга вырабатывается высокооктановый бензин с октановым числом по исследовательскому методу 88-91 единиц. Основной недостаток бензина каталитического крекинга - высокое содержание непредельных углеводородов (до 30%) и серы (0,1-0,5%), что плохо влияет на стабильность топлива при хранении. Бензин быстро желтеет из-за полимеризации и окисления олефинов и потому не может применяться без смешения с другими бензиновыми фракциями.

Компаундирование

И вот наконец, когда все нужные компоненты получены, продукты, полученные риформингом, изомеризацией, алкилированием и каталитическим крекингом смешиваются на блоке компаундирования. При этом зачастую полученный товарный бензин имеет октановое число на уровне 89-90 ед. и чтобы получить требуемое значение 92 или 95 используют МТБЭ. После запрета в экологическом классе 5 монометиланилина, метил-трет-бутиловый эфир остается на сегодня единственным проверенным и разрешенным способом поднятия октанового числа.

chimtec.ru

КАК ДЕЛАЮТ БЕНЗИН - awtolub.ru

С появлением двигателя внутреннего сгорания и бензина, как топлива к нему, началась новая эра. Сегодня без этого невозможно представить себе жизнь современного человека. Но что такое бензин? Какие есть разновидности данного топлива? Как делают бензин? Рассмотрим данные вопросы.1. Разновидности бензина.По температурной разнице перегонки нефти различают несколько видов бензина:Бензин первого сорта — менее 100°Бензин специальный — менее 110°Бензин второго сорта — менее 130°Керосин специальный — менее 265°Керосин обыкновенный — менее 270°Масляные фракции — менее 300°Остатки перегонки нефти называются мазутами и применяются для смазки.2. Технология производства бензина.Технология производства первичного бензина довольна проста. Методом прямой перегонки нефти получают бензин, октановое число которого не выше 91 единицы. Никаких дополнительных затрат не требуется. Однако производство такого бензина экономически не совсем выгодно. Все дело в количестве получаемого бензина. На тысячу литров сырой нефти получается всего пятьсот литров первичного бензина. В связи с этим все чаще поднимается вопрос о том, возможно ли изготовление заменителя бензина, который был бы дешевле?Следующим этапом в производстве бензина является так называемый крекинг (или каталитический риформинг). Данный метод используется в обработке той части, сырья, которая осталась после первичной обработки. Суть метода сводится к повышению детонационной стойкости бензина. Это необходимо для снижения агрессивного воздействия на двигатель автомобиля и снижения воздействия на окружающую среду. Весь процесс проходит при высокой температуре (около 500°С) и высоком давлении. Еще его называют повышением октанового числа бензина. Данный метод придуман именно для повышения абсолютных показателей при перегонке нефти. Бензин, прошедший крекинг, является самым лучшим и наиболее используемым сегодня. Однако многие автолюбители уже давно делают сами дома бесплатный бензин. Из экономических соображений это гораздо выгоднее.3. Хранение нефти.Начнем с сырья, из которого изготавливают бензин. После добычи сырую нефть размещают в специальных резервуарах. Эти резервуары являются постоянным или временным хранилищем нефти до ее транспортировки на нефтеперерабатывающий завод. Там из нефти, путем простой перегонки, производят бензин и другие фракции. Некоторые хранилища рассчитаны на размещение в них уже готовых фракций. Современные нефтеперерабатывающие заводы способны с высокой точностью выделять различные фракции топливных и смазочных материалов из нефти.4. Проверка и контроль.Производство бензина сегодня является высокотехнологичным процессом. Поэтому большая часть всех операций проходит без участия человека. Обслуживающий персонал осуществляет контроль над оборудованием. Однако в процессе проверки качества бензина на выходе участие человека обязательно. Получаемое топливо должно быть прозрачного цвета. Дополнительные соответствия техническим нормам проверяются на специальном оборудовании.5. Влияние на здоровье человека.Бензин является чрезвычайно токсичным веществом. При попадании даже его паров на кожные покровы человека он способен вызывать интоксикацию и покраснения. Попадание бензина внутрь человеческого организма приводит к летальному исходу, так как бензин действует как яд. Изготовление бензина в домашних условиях также требует внимательности, так как выделяемые пары тоже очень опасны для человека.6. Цены на бензин.Самые низкие цены на бензин установлены в странах-импортерах нефти и составляют менее 20 американских центов за литр. Это такие страны как Кувейт, Саудовская Аравия, Венесуэла и другие страны. В нашей стране цена на бензин постоянно растут. В связи с этим людей все чаще интересует вопрос о том, как делают бензин в домашних условиях. Такое производство тоже требует определенных знаний из области химии и физики.

Раздел: Авто советы

awtolub.ru

Основные технологические процессы топливного производства. Нефтепереработка кратко // Добыча и переработка // Наука и технологии

Процесс переработки нефти можно разделить на 3 основных технологических процесса:

1. Первичная переработка - Разделение нефтяного сырья на фракции различных интервалов температур кипения;

2. Вторичная переработка - Переработка фракций первичной переработки путем химического превращения содержащихся в них углеводородов и выработка компонентов товарных нефтепродуктов;

3. Товарное производство - Смешение компонентов с использованием различных присадок, с получением товарных н/продуктов с заданными показателями качества.

Номенклатура продукции нефтеперерабатывающего завода (НПЗ) может включать до 40 позиций, в тч:

- моторное топливо,

- котельное топливо,

- сжиженные газы,

- сырье для нефтехимического производства,

- смазочное, гидравлическое и прочее масло,

- битум,

- нефтяной кокс,

- прочие н/продукты.

Номенклатура н/продуктов, получаемых на конкретных НПЗ, зависит от состава и свойств поставляемой сырой нефти и потребностей в н/продуктах.

Характеристики фракций:

Газы, растворенные в нефти в количестве 1,9 % масс на нефть, и полученные при первичной перегонке нефти, состоят в основном из пропана и бутана. Это - сырье газофракционирующих установок и топливо (бытовой сжиженный газ).

Фракции нк -62 и 62-85оС имеют небольшое октановое число, поэтому направляется на установку изомеризации для повышения октанового числа.

Фракция 85-120 оС - это сырье каталитического риформинга для получения бензола и толуола, компонентов высокооктанового бензина.

Фракции 85-120 и 120-180 оС - сырье каталитического риформинга для получения компонентов высокооктанового бензина, и компонента реактивного топлива.

Фракция 180-230 оС - компонент реактивного и дизельного топлива.

Фракции 230-280 оС и 280-350 оС - это фракции летнего и зимнего дизельного топлива. Цетановое число объединенной фракции 240 - 350 оС = 55 . Температура застывания -12 оС. Депарафинизация фракции 230 - 350 оС позволяет получить зимнее дизтопливо.

Фракция 350-500 оС - вакуумный газойль - сырье процессов каталитического крекинга и гидрокрекинга для получения высокооктанового бензина.

Фракция, выкипающая при температурах выше 500 оС - гудрон - используется как сырье установок термического крекинга, висбрекинга, коксования, производства битума.

Нефтепереработка - непрерывный технологический процесс, остановка которого предусмотрена только для проведения планово - предупредительного ремонта (ППР), ориентировочно каждые 3 года.

Одна из основных задач модернизации НПЗ, проводимой компаниями, - это увеличение межремонтного периода, который, к примеру, у Московского НПЗ составляет около 4,5 лет.

Основная техническая единица НПЗ - технологическая установка, комплекс оборудования которой позволяет выполнить все операции основных технологических процессов переработки.

Основные операции

1. Поставка и прием нефти.

Основные пути доставки сырья на НПЗ:

- магистральные нефтепроводы (МНП) - основной для РФ вариант доставки сырой нефти,

- по железной дороге с использованием вагонов - цистерн,

- нефтеналивными танкерами для прибрежных НПЗ

Нефть поступает на заводской нефтетерминал (рис 1) в нефтяные резервуары (обычно, типа Шухова), который связан нефтепроводами со всеми технологическими установками завода.

Учет принятой на нефтетерминал нефти производится по приборам или путем замеров в нефтяных резервуарах.

2. Первичная переработка

2.1. Подготовка нефти к переработке (электрообессоливание).

Обессоливание служит для уменьшения коррозии технологического оборудования от сырой нефти.

Поступающую из нефтерезервуаров сырую нефть смешивают с водой для растворения солей и отправляют на ЭЛОУ - электрообессоливающую установку.

Электродегидраторы - цилиндрические аппараты со смонтированными внутри электродами - это основное оборудование ЭЛОУ.

Здесь под воздействием тока высокого напряжения (25 кВ и более), эмульсия (смесь воды и нефти) разрушается, вода собирается в низу аппарата и откачивается.

Для более эффективного разрушения эмульсии, в сырье вводятся специальные вещества - деэмульгаторы.

Температура процесса обессоливания - 100-120°С.

2.2.Перегонка нефти

Обессоленая и обезвоженная нефть с ЭЛОУ поступает на установку атмосферно-вакуумной перегонки нефти (АВТ - атмосферно-вакуумная трубчатка).

Нагрев нефти перед разделением на фракции производится в змеевиках трубчатых печей за счет тепла сжигания топлива и тепла дымовых газов.

В последнее время актуальность приобрела задача перевода печей с жидкого на газообразное топливо, что повышает эффективность техпроцесса и существенно улучшает экологию..

АВТ разделена на 2 блока - атмосферной и вакуумной перегонки.

2.2.1. Атмосферная перегонка

Атмосферная перегонка обеспечивает отбор светлых нефтяных фракций - бензиновой, керосиновой и дизельных, выкипающих при температуре до 360°С, выход которых может составлять 45-60% на нефть.

Нагретая в печи нефть разделяются на отдельные фракции в ректификационной колонне - цилиндрическом вертикальном аппарате, внутри которого расположены контактные устройства (тарелки), через которые пары движутся вверх, а жидкость - вниз.

Различные по размеру и конфигурации ректификационные колонны используются на всех установках нефтеперерабатывающего производства, количество тарелок в них меняется в интервале 20 - 60.

Тепло подводится в нижнюю часть колонны и отводится с верхней части колонны, поэтому температура в колонне постепенно снижается от низа к верху.

В результате сверху колонны отводится бензиновая фракция в виде паров, пары керосиновой и дизельных фракций конденсируются в соответствующих частях колонны и выводятся, а жидкий мазут - остаток атмосферной перегонки , откачивается с низа колонны.

2.2.2. Вакуумная перегонка

Вакуумная перегонка обеспечивает отбор масляных дистиллятов или широкой масляной фракции (вакуумного газойля) от мазута.

На НПЗ топливно-масляного профиля - отбор масляных дистиллятов, на НПЗ топливного профиля - вакуумного газойля.

Термическое разложение углеводородов (крекинг) начинается при при температуре более 380°С , а конец кипения вакуумного газойля - при 520°С и более.

Перегонка при близком к вакууму остаточном давлении 40-60 мм рт ст позволяет снизить максимальную температуру в аппарате до 360-380°С, что позволяет отбирать масляные фракции..

Паровые или жидкостные эжекторы - основное оборудование для создания разряжения в колонне.

Остаток вакуумной перегонки - гудрон.

2.2.3. Стабилизация и вторичная перегонка бензина

Получаемая на блоке АВТ бензиновая фракция не может быть использована по следующим причинам:

- содержит газы, в основном пропан и бутан, в превышающем требования по качеству объеме, что не позволяет использовать их как компоненты автомобильного бензина или товарного прямогонного бензина,

- процессы нефтепереработки, направленные на повышение октанового числа бензина и производства ароматических углеводородов в качестве сырья используют узкие бензиновые фракции.

Поэтому используется техпроцесс, в результате которого от бензиновой фракции отгоняются сжиженные газы, и осуществляется ее разгонка на 2-5 узких фракций на соответствующем количестве колонн.

Продукты первичной переработки нефти, собственно, как и продукты в других техпроцессах переработки, охлаждаются:

- в теплообменниках, что обеспечивает экономию технологического топлива,

- в водяных и воздушных холодильниках.

Далее продукты первичной переработки идут на очередные переделы.

Установка первичной переработки - обычно комбинированные ЭЛОУ -АВТ - 6 мощностью переработки до 6 млн т/ год нефти, в составе:

- блока ЭЛОУ, предназначенного для подготовки нефти к переработке путем удаления из нее воды и солей,

- блока АТ, предназначенного для разгонки светлых нефтепродуктов на узкие фракции,

- блока ВТ, предназначен для разгонки мазута (>350оС) на фракции,

- блока стабилизации, предназначенного для удаления из бензина газообразных компонентов, в тч коррозийно-активного сероводорода и углеводородных газов,

- блока вторичной разгонки бензиновых фракций, предназначенного для разделения бензина на фракции.

В стандартной конфигурации установки, сырая нефть смешивается с деэмульгатором, нагревается в теплообменниках, 4мя параллельными потоками обессоливается в 2х ступенях горизонтальных электродегидраторов, дополнительно нагревается в теплообменниках и направляется в отбензинивающую колонну.

Тепло к нижнейчасти этой колонны подводится горячей струей, циркулирующей через печь.

Далее частично отбензиненная нефть из колонны после нагрева в печи направляется в основную колонну, где осуществляется ректификация с получением паров бензина в верхней части колонны, 3 боковых дистиллятов из отпарных колонн и мазута в нижней части колонны.

Отвод тепла в колонне осуществляется верхним испаряющим орошением и 2мя промежуточными циркуляционными орошениями.

Смесь бензиновых фракций из колонн и направляется на стабилизацию в колонну, где сверху отбираются легкие головные фракции (жидкая головка), а снизу- стабильный бензин.

Стабильный бензин в колоннах подвергается вторичной перегонке с получением узких фракций, используемых в качестве сырья для каталитического риформинга.

Тепло к низу стабилизатора и колонн вторичной перегонки подводится циркулирующими флегмами, нагреваемыми в печи.

Мазут из основной колонны в атмосферной секции насосом подается в вакуумную печь, откуда с температурой 420 оС направляется в вакуумную колонну.

В нижнюю часть этой вакуумной колонны подается перегретый водяной пар.

С верха колонны водяной пар вместе с газообразными продуктами разложения поступает в поверхностные конденсаторы, откуда газы разложения отсасываются 3-ступенчатыми пароэжекторными вакуумными насосами.

Остаточное давление в колонне 50 мм рт cт.

Боковым погоном вакуумной колонны служат фракции , которые насосом через теплообменник и холодильник направляются в емкости.

В 3 сечениях вакуумной колонны организовано промежуточное циркуляционное орошение. Гудрон в низу вакуумной колонны откачивается насосом через теплообменник и холодильник в резервуары.

Аппаратура и оборудование АВТ-6 занимают площадку 265*130 м2, или 3.4 га.

Инфраструктура ЭЛОУ - АВТ - 6 включает:

- подстанцию, насосную станцию для перекачки воды и компрессорную станцию,

- блок ректификационной аппаратуры,

- конденсационно-холодильная аппаратура и промежуточные емкости, установленные на 1-ярусном ж/бетонном постаменте,

- насосы технологического назначения для перекачки н/продуктов,

- многосекционные печи общей тепловой мощностью порядка 160 млн ккал*ч, используемых в качестве огневых нагревателей мазута, нефти и циркулирующей флегмы.

Продукты первичной переработки нефтиУвеличить

Фотографии установок первичной переработки различной конфигурации

Рис. 3. Установка ЭЛОУ-АВТ-6 Саратовского НПЗ. В центре - атмосферная колонна (показаны точки отбора фракций), справа - вакуумная

Рис. 4. Установки вторичной перегонки бензина и атмосферной перегонки на НПЗ «Славнефть-ЯНОС» (слева направо)

Рис. 5. Установка вакуумной перегонки мощностью 1,5 млн. тонн в год на Туркменбашинском НПЗ по проекту фирмы Uhde

Рис. 6. Установка вакуумной перегонки мощностью 1,6 млн. тонн в год на НПЗ «ЛУКОЙЛ-ПНОС». На переднем плане - трубчатая печь (жёлтого цвета)

Рис. 7. Вакуумсоздающая аппаратура фирмы Graham. Видны 3 эжектора, в которые поступают пары с верха колонны

3. Вторичная переработка нефти

Продукты первичной переработки нефти, как правило, не являются товарными н/продуктами.

Например, октановое число бензиновой фракции составляет около 65 пунктов, содержание серы в дизельной фракции может достигать 1,0% и более, тогда как норматив составляет, в зависимости от марки, 0,005% - 0,2%.

Кроме того, темные нефтяные фракции могут быть подвергнуты дальнейшей квалифицированной переработке.

Поэтому, нефтяные фракции поступают на установки вторичных процессов, которые обеспечивают улучшение качества н/продуктов и углубление переработки нефти.

Каталитический крекинг (каткрекинг) - важнейший процесс нефтепереработки, существенно влияющий на эффективность НПЗ в целом.

Сущность процесса заключается в разложении углеводородов, входящих в состав сырья (вакуумного газойля) под воздействием температуры в присутствии цеолитсодержащего алюмосиликатного катализатора.

Целевой продукт установки КК - высокооктановый компонент бензина с октановым числом 90 п и более, его выход составляет 50 - 65% в зависимости от используемого сырья, применяемой технологии и режима.

Высокое октановое число обусловлено тем, что при каткрекинге происходит также изомеризация.

В ходе процесса образуются газы, содержащие пропилен и бутилены, используемые в качестве сырья для нефтехимии и производства высокооктановых компонентов бензина, легкий газойль - компонент дизельных и печных топлив, и тяжелый газойль - сырье для производства сажи, или компонент мазутов.

Мощность современных установок в среднем 1,5 - 2,5 млн т/год, но есть и 4,0 млн т/год.

Ключевым участком установки является реакторно-регенераторный блок.

В состав блока входит печь нагрева сырья, реактор, в котором непосредственно происходят реакции крекинга, и регенератор катализатора.

Назначение регенератора - выжиг кокса, образующегося в ходе крекинга и осаждающегося на поверхности катализатора. Реактор, регенератор и узел ввода сырья связаны трубопроводами (линиями пневмотранспорта), по которым циркулирует катализатор.

Мощностей каталитического крекинга на российских НПЗ в настоящее время недостаточно, и за счет ввода новых установок решается проблема с прогнозируемым дефицитом бензина.

Сырье с температурой 500-520°С в смеси с пылевидным катализатором движется по лифт-реактору вверх в течение 2-4 секунд и подвергается крекингу.

Продукты крекинга поступают в сепаратор, расположенный сверху лифт-реактора, где завершаются химические реакции и происходит отделение катализатора, который отводится из нижней части сепаратора и самотеком поступает в регенератор, в котором при температуре 700°С осуществляется выжиг кокса.

После этого восстановленный катализатор возвращается на узел ввода сырья.

Давление в реакторно-регенераторном блоке близко к атмосферному.

Общая высота реакторно-регенераторного блока составляет 30 - 55 м, диаметры сепаратора и регенератора - 8 и 11 м соответственно для установки мощностью 2,0 млн т/год.

Продукты крекинга уходят с верха сепаратора, охлаждаются и поступают на ректификацию.

Каткрекинг может входить в состав комбинированных установок, включающих предварительную гидроочистку или легкий гидрокрекинг сырья, очистку и фракционирование газов.

В правой части - реактор, слева от него - регенератор

Гидрокрекинг - процесс, направленный на получение высококачественных керосиновых и дизельных дистиллятов, а также вакуумного газойля путем крекинга углеводородов исходного сырья в присутствии водорода.

Одновременно с крекингом происходит очистка продуктов от серы, насыщение олефинов и ароматических соединений, что обуславливает высокие эксплуатационные и экологические характеристики получаемых топлив.

Например, содержание серы в дизельном дистилляте гидрокрекинга составляет миллионные доли %.

Получаемая бензиновая фракция имеет невысокое октановое число, ее тяжелая часть может служить сырьем риформинга.

Гидрокрекинг также используется в масляном производстве для получения высококачественных основ масел, близких по эксплуатационным характеристикам к синтетическим.

Линейка сырья гидрокрекинга довольно широкая - прямогонный вакуумный газойль, газойли каталитического крекинга и коксования, побочные продукты маслоблока, мазут, гудрон.Установки гидрокрекинга, как правило, строятся большой единичной мощности переработки - 3-4 млн т/год.

Обычно объемов водорода, получаемых на установках риформинга, недостаточно для обеспечения гидрокрекинга, поэтому на НПЗ сооружаются отдельные установки по производству водорода путем паровой конверсии углеводородных газов.

Технологические схемы принципиально схожи с установками гидроочистки - сырье, смешанное с водородосодержащим газом (ВСГ), нагревается в печи, поступает в реактор со слоем катализатора, продукты из реактора отделяются от газов и поступают на ректификацию.

Однако, реакции гидрокрекинга протекают с выделением тепла, поэтому технологической схемой предусматривается ввод в зону реакции холодного ВСГ, расходом которого регулируется температура. Гидрокрекинг - один из самых опасных процессов нефтепереработки, при выходе температурного режима из-под контроля, происходит резкий рост температуры, приводящий к взрыву реакторного блока.

Аппаратурное оформление и технологический режим установок гидрокрекинга различаются в зависимости от задач, обусловленных технологической схемой конкретного НПЗ, и используемого сырья.

Например, для получения малосернистого вакуумного газойля и относительно небольшого количества светлых (легкий гидрокрекинг), процесс ведется при давлении до 80 атм на одном реакторе при температуре около 350°С.

Для максимального выхода светлых (до 90%, в том числе до 20% бензиновой фракции на сырье) процесс осуществляется на 2х реакторах.

При этом, продукты после 1го реактора поступают в ректификационную колонну, где отгоняются полученные в результате химических реакций светлые, а остаток поступает во 2й реактор, где повторно подвергается гидрокрекингу.

В данном случае, при гидрокрекинге вакуумного газойля давление составляет около 180 атм, а при гидрокрекинге мазута и гудрона - более 300.

Температура процесса, соответственно, варьируется в интервале 380 - 450°С и выше.

В России технология гидрокрекинга внедрена в 2000х гг на НПЗ в Перми, Ярославле и Уфе, на ряде заводов установки гидроочистки реконструированы под процесс легкого гидрокрекинга.

Совместное строительство установок гидрокрекинга и каталитического крекинга в рамках комплексов глубокой переработки нефти представляется наиболее эффективным для производства высокооктановых бензинов и высококачественных средних дистиллятов.

4. Товарное производство

В ходе вышеуказанных технологических процессов вырабатываются только компоненты моторных, авиационных и котельных топлив с различными показателями качества.

Например, октановое число прямогонного бензина составляет около 65, риформата - 95-100, бензина коксования - 60.

Другие показатели качества (например, фракционный состав, содержание серы) у компонентов также различаются.

Для получения товарных н/продуктов организуется смешение полученных компонентов в соответствующих емкостях НПЗ в соотношениях, которые обеспечивают нормируемые показатели качества.

Расчет рецептуры смешения (компаундирования) компонентов осуществляется при помощи модулей математических моделей, используемых для планирования производства по НПЗ в целом.

Исходными данными для моделирования являются прогнозные остатки сырья, компонентов и товарной продукции, план реализации н/продуктов в разрезе ассортимента, плановый объем поставок нефти. Таким образом возможно рассчитать наиболее эффективные соотношения между компонентами при смешении.

Зачастую на заводах используются устоявшиеся рецептуры смешения, которые корректируются при изменении технологической схемы.

Компоненты н/продуктов в заданном соотношении закачиваются в емкость для смешения, куда также могут подаваться присадки.

Полученные товарные н/продукты проходят контроль качества и откачиваются в резервуары товарно-сырьевой базы, откуда отгружаются потребителю.

5. Доставка нефтепродуктов

- перевозка ж/д транспортом - основной способ доставки н/продуктов в России. Для погрузки в вагоны-цистерны используются наливные эстакады.

- по магистральным нефтепродуктопроводам (МНПП) Транснефтепродукта,

- речными и морскими судами.

neftegaz.ru


Смотрите также