Octane rating. Ron 90 бензин


Octane rating - Wikicars

The octane rating is a measure of the resistance of petrol and other fuels to autoignition in spark-ignition internal combustion engines.

The octane number of a fuel is measured in a test engine, and is defined by comparison with the mixture of 2,2,4-trimethylpentane (iso-octane) and heptane which would have the same anti-knocking capacity as the fuel under test: the percentage, by volume, of 2,2,4-trimethylpentane in that mixture is the octane number of the fuel. For example, petrol with the same knocking characteristics as a mixture of 90% iso-octane and 10% heptane would have an octane rating of 90.<ref>Template:Citation/core{{#if:|}}</ref> This does not mean that the petrol contains just iso-octane and heptane in these proportions, but that it has the same detonation resistance properties. Because some fuels are more knock-resistant than iso-octane, the definition has been extended to allow for octane numbers higher than 100.

Octane rating does not relate to the energy content of the fuel. It is only a measure of the fuel's tendency to burn in a controlled manner, rather than exploding in an uncontrolled manner. Where octane is raised by blending in ethanol, energy content per volume is reduced.

It is possible for a fuel to have a Research Octane Number (RON) greater than 100, because iso-octane is not the most knock-resistant substance available. Racing fuels, AvGas, liquefied petroleum gas (LPG), and alcohol fuels such as methanol or ethanol may have octane ratings of 110 or significantly higher — ethanol's RON is 129 (116 MON, 122 AKI). Typical "octane booster" gasoline additives include MTBE, ETBE, isooctane and toluene. Lead in the form of tetra-ethyl lead was once a common additive, but since the 1970s, its use in most of the industrialised world has been restricted, and its use is currently limited mostly to aviation gasoline.

Measurement methods

Research Octane Number (RON)

The most common type of octane rating worldwide is the Research Octane Number (RON). RON is determined by running the fuel in a test engine with a variable compression ratio under controlled conditions, and comparing the results with those for mixtures of iso-octane and n-heptane.

Motor Octane Number (MON)

There is another type of octane rating, called Motor Octane Number (MON), or the aviation lean octane rating, which is a better measure of how the fuel behaves when under load as it is done at 900 rpm instead of the 600 rpm of the RON<ref>http://www.texacoursa.com/glossary/r.html</ref><ref>http://www.texacoursa.com/glossary/m.html</ref>. MON testing uses a similar test engine to that used in RON testing, but with a preheated fuel mixture, a higher engine speed, and variable ignition timing to further stress the fuel's knock resistance. Depending on the composition of the fuel, the MON of a modern gasoline will be about 8 to 10 points lower than the RON. Normally, fuel specifications require both a minimum RON and a minimum MON.

Anti-Knock Index (AKI)

In most countries, including all of those of Australia and Europe the "headline" octane rating shown on the pump is the RON, but in Canada, the United States and some other countries, like Brazil<ref>http://www.br.com.br/wps/portal/!ut/p/c0/04_SB8K8xLLM9MSSzPy8xBz9CP0os3gjY1NfNzcPIwMLSzNLA09_Pw9LcxDXwEC_INtREQCu4ryx/?PC_7_235MFFh3089690IONH97Fh3085_WCM_CONTEXT=/wps/wcm/connect/Portal%20de%20Conteudo/produtos/automotivos/gasolina/gasolina+podium/gasolina+podium</ref>, the headline number is the average of the RON and the MON, called the Anti-Knock Index (AKI, and often written on pumps as (R+M)/2). It may also sometimes be called the Road Octane Number (RdON), Pump Octane Number (PON), or (R+M)/2.

Difference between RON and AKI

Because of the 8 to 10 point difference noted above, the octane rating shown in the United States is 4 to 5 points lower than the rating shown elsewhere in the world for the same fuel. See the table in the following section for a comparison.

Examples of octane ratings

The RON and MON of n-heptane and iso-octane are exactly 0 and 100, by definition. The following table lists octane ratings for various other fuels.<ref>Petroleum and Coal</ref><ref>http://www.iupac.org/publications/pac/1983/pdf/5502x0199.pdf</ref>[10]

Fuel RON MON AKI
hexadecane < -30
n-octane -10
n-heptane (RON and MON 0 by definition) 0 0 0
diesel fuel 15–25
2-methylheptane 23
n-hexane 25 26 26
1-pentene 34
2-methylhexane 44
1-heptene 60
n-pentane 62
requirement for a typical two-stroke outboard engine<ref>Johnson Operation and Maintenance Manual, 1999</ref> 69 65 67
Pertamina "Premium" gasoline in Indonesia 88
n-butanol 92 71 83
n-butane 91
"regular" gasoline in Canada and the US 91–92 82–83 87
Pertamina "Pertamax" gasoline in Indonesia 92
Shell "Super" in Indonesia 92
Pertamina "Pertamax Plus" gasoline in Indonesia 95
Shell "Super Extra" in Indonesia 95
"EuroSuper" or "EuroPremium" or "Regular unleaded" in Europe 95 85–86 90–91
"SuperPlus" in Germany, Great Britain and Slovenia 98 89–90 93–94
iso-octane (RON and MON 100 by definition) 100 100 100
benzene 101
"BP Ultimate 102"<ref>BP Ultimate 102</ref> 102 93–94 97–98
t-butanol 103 91 97
ethane 108
propane 110
toluene 111 95 103
E85 gasoline 100-105<ref>Iowa Renewable Fuels Association E85 Fact Sheet</ref>
xylene 117
isopropanol 118 98 108
ethanol 129 116 122
methanol 133 105 119
methane 135 122 129
hydrogen* > 130 very low<ref name=natgas>Template:Citation/core{{#if:|}}</ref>

*Hydrogen does not fit well into the normal definitions of octane number. It has a very high RON and a low MON,<ref name=natgas /> so that it has low knock resistance in practice,<ref>LIQUID HYDROGEN AS A PROPULSION FUEL,1945-1959</ref> due to its low ignition energy (primarily due to its low dissociation energy) and extremely high flame speed. These traits are highly desirable in rocket engines, but undesirable in Otto-cycle engines. However, as a minor blending component (e.g. in a bi-fuel vehicle), hydrogen raises overall knock resistance. Flame speed is limited by the rest of the component species; hydrogen may reduce knock by contributing its high thermal conductivity.

Effects of octane rating

Higher octane ratings correlate to higher activation energies. Activation energy is the amount of energy necessary to start a chemical reaction. Since higher octane fuels have higher activation energies, it is less likely that a given compression will cause autoignition.

It might seem odd that fuels with higher octane ratings are used in more powerful engines, since such fuels ignite less easily. However, an uncontrolled ignition is not desired in a spark ignition engine.

A fuel with a higher octane rating can be run at a higher compression ratio without causing detonation. Compression is directly related to power (see engine tuning), so engines that require higher octane usually deliver more motive power. Engine power is a function of the fuel, as well as the engine design, and is related to octane rating of the fuel. Power is limited by the maximum amount of fuel-air mixture that can be forced into the combustion chamber. When the throttle is partially open, only a small fraction of the total available power is produced because the manifold is operating at pressures far below atmospheric. In this case, the octane requirement is far lower than when the throttle is opened fully and the manifold pressure increases to atmospheric pressure, or higher in the case of supercharged or turbocharged engines.

Many high-performance engines are designed to operate with a high maximum compression, and thus demand high-octane premium gasoline. A common misconception is that power output or fuel mileage can be improved by burning higher octane fuel than a particular engine was designed for. The power output of an engine depends in part on the energy density of its fuel, but similar fuels with different octane ratings have similar density. Since switching to a higher octane fuel does not add any more hydrocarbon content or oxygen, the engine cannot produce more power.

However, burning fuel with a lower octane rating than required by the engine often reduces power output and efficiency one way or another. If the engine begins to detonate (blow up), that reduces power and efficiency for the reasons stated above. Many modern car engines feature a [knock sensor] – a small piezoelectric microphone which detects knock, and then sends a signal to the engine control unit to retard the ignition timing. Retarding the ignition timing reduces the tendency to detonate, but also reduces power output and fuel efficiency.

Most fuel stations have two storage tanks (even those offering 3 or 4 octane levels), and you are given a mixture of the higher and lower octane fuel. Purchasing premium simply means more fuel from the higher octane tank; the detergents in the fuel are often the same.

The octane rating was developed by chemist Russell Marker at the Ethyl Corporation c1926. The selection of n-heptane as the zero point of the scale was due to the availability of very high purity n-heptane, not mixed with other isomers of heptane or octane, distilled from the resin of the Jeffrey Pine. Other sources of heptane produced from crude oil contain a mixture of different isomers with greatly differing ratings, which would not give a precise zero point.

Regional variations

The selection of octane ratings available at the pump can vary greatly from region to region.

  • Australia, "regular" unleaded fuel is 91 RON, "premium" unleaded with 95 RON is widely available, and 98 RON fuel is also reasonably common. Shell used to sell 100 RON petrol from a small number of service stations, most of which are located in capital cities (stopped in August 2008).
  • Germany, "Normal" 91 RON, "Super" 95 RON and "Super Plus" 98 RON is practically available everywhere. Big suppliers like Shell or Aral offer 100 RON gasoline (Shell V-Power, Aral Ultimate) at almost every fuel station. "Normal" 91 RON is more and more disappearing, because lower production amounts make it more expensive than "Super" 95 RON, so it is often not offered any more.
  • Hong Kong, only 98 RON and 99 RON are available in the market. There have been calls to re-introduced 95 RON, but the calls have been rejected by all petrol station chains, citing that 95 RON was phased out because of market forces.
  • Italy, 95 RON is the only compulsory gasoline offered (verde), only few fuel stations (Agip, IP, IES, OMV) offer 98 RON as the premium type, many Shell and Tamoil stations close to the cities offer also V-Power Gasoline rated at 100 RON
  • India India's Ordinary And Premium Petrols are of 89-91 RON. The premium petrols are generally ordinary fuels with additives, that do not really change the octane value. Two variants, "Speed 93" and "Speed 97" were launched, with RON values of 93 and 97, but Speed 97 was discontinued. India's vehicles usually have compression ratios under 10:1, thus enabling them to use lower quality petrols without engine knocking.
  • Indonesia Indonesia's "Premium" petrol rated at 88 RON and being subsidized it cost only about US$ 0.50/liter. Other options are "Pertamax" rated at 92 RON and the "Pertamax Plus" rated at RON 95, which is the highest octane available for automotive gasoline in Indonesia.
  • Malaysia, the "regular" unleaded fuel is 95 RON, "premium" fuel is rated at 97 RON(but for Shell 97 RON is V-Power), and Shell's V-Power Racing is rated at 99 RON.
  • Netherlands; 95 RON "Euro" and 98 RON "Super" are sold at practically every station. Shell V-Power is a 97 RON (labelled as 95 due to the legalities of only using 95 or 98 labelling), whereas in neighbouring Germany Shell V-Power consists of the regular 100 RON fuel.
  • Spain, 95 RON "Euro" is sold in every station with 98 RON "Super" being offered in most stations. Many stations around cities and highways offer other high octane "premium" brands.
  • New Zealand; 91 RON "Regular" and 95 RON "Premium" are both widely available. 98 RON is available instead of 95 RON at some service stations in larger urban areas.
  • Ireland, 95 RON "unleaded" is the only petrol type available through stations, although E5 (99 RON) is becoming more commonplace.
  • Russia and CIS countries, 80 RON (76 MON) is the minimum available, the standard is 92 RON.
  • South Africa, "regular" unleaded fuel is 95 RON in coastal areas with most fuel stations optionally offering 97 RON. Inland (higher altitude) "regular" unleaded fuel is 93 RON, once again most fuel stations optionally offer 95 RON.
  • United Kingdom, 'regular' petrol has an octane rating of 95 RON, with 97 RON fuel being widely available as the Super Unleaded. Tesco and Shell both offer 99 RON fuel. BP is currently trialling the public selling of the super-high octane petrol BP Ultimate Unleaded 102, which as the name suggests, has an octane rating of 102 RON. Although BP Ultimate Unleaded (with an octane rating of 97 RON) and BP Ultimate Diesel are both widely available throughout the UK, BP Ultimate Unleaded 102 is (as of October 2007) only available throughout the UK in 10 filling stations, and is priced at about two and half times more than their 97 RON fuel. Also offered Shell V-Power, but in a 99 RON octane rating, and Tesco fuel stations also supply the Greenergy produced 99 RON "Tesco 99".
  • United States, in the Rocky Mountain (high altitude) states, 85 AKI is the minimum octane, and 91 AKI is the maximum octane available in fuel. The reason for this is that in higher-altitude areas, a typical naturally-aspirated engine draws in less air mass per cycle due to the reduced density of the atmosphere. This directly translates to less fuel and reduced absolute compression in the cylinder, therefore deterring knock. It is safe to fill up a carbureted car that normally takes 87 AKI fuel at sea level with 85 AKI fuel in the mountains, but at sea level the fuel may cause damage to the engine. A disadvantage to this strategy is that most turbocharged vehicles are unable to produce full power, even when using the "premium" 91 AKI fuel. In some east coast states, up to 94 AKI is available. In parts of the Midwest (primarily Minnesota, Iowa, Illinois and Missouri) ethanol based E-85 fuel with 105 AKI is available. Often, filling stations near US racing tracks will offer higher octane levels such as 100 AKI. California fuel stations will offer 87, 89, and 91 AKI octane fuels, and at some stations, 100 AKI or higher octane, sold as racing fuel. Until summer 2001 before the phase-out of methyl tert-butyl ether aka MTBE as an octane enhancer additive, 92 AKI was offered in lieu of 91.

Generally, octane ratings are higher in Europe than they are in North America and most other parts of the world. This is especially true when comparing the lowest available octane level in each country. In many parts of Europe, 95 RON (90-91 AKI) is the minimum available standard, with 97/98 RON being higher specification (being called Super Unleaded). The higher rating seen in Europe is an artifact of a different underlying measuring procedure. In most countries (including all of Europe and Australia) the "headline" octane that would be shown on the pump is the RON, but in Canada, the United States and some other countries the headline number is the average of the RON and the MON, sometimes called the Anti-Knock Index (AKI), Road Octane Number (RdON), Pump Octane Number (PON), or (R+M)/2. Because of the 8 to 10 point difference noted above, this means that the octane in the United States will be about 4 to 5 points lower than the same fuel elsewhere: 87 octane fuel, the "regular" gasoline in Canada and the US, would be 91-92 in Europe. However most European pumps deliver 95 (RON) as "regular", equivalent to 90–91 US AKI=(R+M)/2, and deliver 98, 99 or 100 (RON) (93-94 AKI) labeled as Super Unleaded - thus regular petrol sold in much of Europe corresponds to premium sold in the United States.

In other countries "regular" unleaded gasoline, when available, is sometimes as low as 85 RON (still with the more regular fuel, 95, and premium, around 98, available).

See also

References

  • SAE standard J 1297 Alternative Automotive Fuels, Sept 2002
  • Khoo, Kenny K. Understanding Octane and its Related Components. Yellowknife: Smithsonian Press, 2006.

External links

Octane ratings of some hydrocarbons

Information in general

wikicars.org

Octane rating - OilfieldWiki

A US gas station pump offering five different (R+M)/2 octane ratings

Octane is a hydrocarbon liquid which is used as a reference standard to describe the tendency of gasoline, petrol, or benzin fuels to self ignite during compression prior to the desired position of the piston in the cylinder as appropriate for valve and ignition timing. The problem of premature ignition is referred to as pre-ignition and also as engine knock, which is a sound that is made when the fuel ignites too early in the compression stroke.

Severe knock causes severe engine damage, such as broken connecting rods, melted pistons, melted or broken valves and other components. The Octane rating is a measure of how likely a gasoline or liquid petroleum fuel is to self ignite. The higher the number, the less likely an engine is to pre-ignite and suffer damage.

The most typically used engine management systems found in automobiles today monitor the level of knock that is being produced by the fuel being used. Many high performance engines require a rating of their fuel at 93 Octane. They will however run on lower octane fuels as necessary. In modern computer controlled engines, the timing of the ignition will be automatically altered by the fuel management system to reduce the pre-ignition to an acceptable level.

The octane rating of gasoline is measured in a test engine, and is defined by comparison with the mixture of 2,2,4-trimethylpentane (iso-octane) and heptane which would have the same anti-knocking capacity as the fuel under test: the percentage, by volume, of 2,2,4-trimethylpentane in that mixture is the octane number of the fuel. For example, petrol with the same knocking characteristics as a mixture of 90% iso-octane and 10% heptane would have an octane rating of 90.[1] This does not mean that the petrol contains just iso-octane and heptane in these proportions, but that it has the same detonation resistance properties. Because some fuels are more knock-resistant than iso-octane, the definition has been extended to allow for octane numbers higher than 100.

Octane rating does not relate to the energy content of the fuel (see heating value). It is only a measure of the fuel's tendency to burn in a controlled manner, rather than exploding in an uncontrolled manner. Where the octane number is raised by blending in ethanol, energy content per volume is reduced.

It is possible for a fuel to have a Research Octane Number (RON) greater than 100, because iso-octane is not the most knock-resistant substance available. Racing fuels, avgas, liquefied petroleum gas (LPG), and alcohol fuels such as methanol may have octane ratings of 110 or significantly higher. Typical "octane booster" gasoline additives include MTBE, ETBE, isooctane and toluene. Lead in the form of tetra-ethyl lead was once a common additive, but since the 1970s, its use in most of the industrialised world has been restricted, and its use is currently limited mostly to aviation gasoline.

Measurement methods

Research Octane Number (RON)

The most common type of octane rating worldwide is the Research Octane Number (RON). RON is determined by running the fuel in a test engine with a variable compression ratio under controlled conditions, and comparing the results with those for mixtures of iso-octane and n-heptane.

Motor Octane Number (MON)

There is another type of octane rating, called Motor Octane Number (MON), or the aviation lean octane rating, which is a better measure of how the fuel behaves when under load, as it is determined at 900 rpm engine speed, instead of the 600 rpm for RON.[2][3] MON testing uses a similar test engine to that used in RON testing, but with a preheated fuel mixture, higher engine speed, and variable ignition timing to further stress the fuel's knock resistance. Depending on the composition of the fuel, the MON of a modern gasoline will be about 8 to 10 points lower than the RON, however there is no direct link between RON and MON. Normally, fuel specifications require both a minimum RON and a minimum MON.[citation needed]

Anti-Knock Index (AKI)

In most countries, including Australia and all of those in Europe, the "headline" octane rating shown on the pump is the RON, but in Canada, the United States and some other countries, like Brazil, the headline number is the average of the RON and the MON, called the Anti-Knock Index (AKI, and often written on pumps as (R+M)/2). It may also sometimes be called the Pump Octane Number (PON).

Difference between RON and AKI

Because of the 8 to 10 point difference noted above, the octane rating shown in the United States is 4 to 5 points lower than the rating shown elsewhere in the world for the same fuel. See the table in the following section for a comparison.

Observed Road Octane Number (RdON)

The final type of octane rating, called Observed Road Octane Number (RdON), is derived from testing gasolines in real world multi-cylinder engines, normally at wide open throttle. It was developed in the 1920s and is still reliable today. The original testing was done in cars on the road but as technology developed the testing was moved to chassis dynamometers with environmental controls to improve consistency.[4]

Examples of octane ratings

The RON/MON values of n-heptane and iso-octane are exactly 0 and 100, respectively, by the definition of octane rating. The following table lists octane ratings for various other fuels.[5][6]

Fuel RON MON AKI
hexadecane < -30
n-octane -10
n-heptane (RON and MON 0 by definition) 0 0 0
diesel fuel 15–25
2-methylheptane 23 23.8
n-hexane 25 26.0 26
1-pentene 34
2-methylhexane 44 46.4
3-methylhexane 55.0
1-heptene 60
n-pentane 62 61.9
requirement for a typical two-stroke outboard engine[7] 69 65 67
Pertamina "Premium" gasoline in Indonesia 88
n-butanol 92 71 83
2,2-dimethylpropane 80.2
"regular" gasoline in Australia, New Zealand, Canada and the US 91–92 82–83 87
Pertamina "Pertamax" gasoline in Indonesia 92
Shell "Super" in Indonesia 92
n-butane 94[8] 90.1
2-methylbutane 90.3
Pertamina "Pertamax Plus" gasoline in Indonesia 95
Shell "Super Extra" in Indonesia 95
Shell "FuelSave " in Malaysia 95
"EuroSuper" or "EuroPremium" or "Regular unleaded" in Europe, "SP95" in France 95 85–86 90–91
Shell "V-Power 97" in Malaysia 97
"SuperPlus" in Germany, Great Britain, Slovenia and Spain, "SP98" in France 98 89–90 93–94
2,2-dimethylbutane 93.4
2,3-dimethylbutane 94.4
ExxonMobil Avgas 100[9] 99.5 (min)
Shell "V-Power Racing" in Australia - discontinued July 2008 [10] 100
"isooctane" (RON and MON 100 by definition) 100 100 100
benzene 101
i-butane 102[11] 97.6
"BP Ultimate 102 - now discontinued"[12] 102 93–94 97–98
t-butanol 103 91 97
2,3,3-trimethylpentane 106.1[13] 99.4[13] 103
ethane 108
2,2,3-trimethylpentane 109.6[13] 99.9[13] 105
toluene 111 95 103
E85 gasoline 94-96[14]
propane 112 97
2,2,3-trimethylbutane 112.1[13] 101.3[13] 106
xylene 117
isopropanol 118 98 108
methanol 108.7[15] 88.6[15] 98.65
ethanol 108.6[15] 89.7[15] 99.15
2,5-Dimethylfuran 119
methane 120 120 120
hydrogen* > 130 very low[16]

*Hydrogen does not fit well into the normal definitions of octane number. It has a very high RON and a low MON,[16] so that it has low knock resistance in practice,[17] due to its low ignition energy (primarily due to its low dissociation energy) and extremely high flame speed. These traits are highly desirable in rocket engines, but undesirable in Otto-cycle engines. However, as a minor blending component (e.g. in a bi-fuel vehicle), hydrogen raises overall knock resistance. Flame speed is limited by the rest of the component species; hydrogen may reduce knock because of its high thermal conductivity.[citation needed]

Effects of octane rating

This article has multiple issues. Please help improve it or discuss these issues on the talk page.

Higher octane ratings correlate to higher activation energies: This being the amount of applied energy required to initiate combustion. Since higher octane fuels have higher activation energy requirements, it is less likely that a given compression will cause uncontrolled ignition, otherwise known as autoignition or detonation.

It might seem odd that fuels with higher octane ratings are used in more powerful engines, since such fuels ignite less easily. However, detonation is undesirable in a spark ignition engine, and is signified by audible "pinging" or in more extreme cases "knock".

A fuel with a higher octane rating can be burnt in an engine with a high compression ratio without causing detonation, as such fuels are less prone to detonation. Compression is directly related to power and to thermodynamic efficiency (see engine tuning), so engines that require a higher octane fuel usually develop more motive power and therefore do more work in relation to the calorific value of the fuel (BTU) being used. Power output is a function of the properties of the fuel used, as well as the design of the engine itself, and is related to octane rating of the fuel. Power is limited by the maximum amount of fuel-air mixture that can be brought into the combustion chamber. When the throttle is partly open, only a small fraction of the total available power is produced because the manifold is operating at pressures far below that of the external atmosphere (depression). In this case, the octane requirement is far lower than when the throttle is opened fully and the manifold pressure increases to almost that of the external atmosphere, or higher in the case of forced induction engines (See supercharged or turbocharged engines).

Many high-performance engines are designed to operate with a high maximum compression, and thus demand fuels of higher octane. A common misconception is that power output or fuel efficiency can be improved by burning fuel of higher octane than that specified by the engine manufacturer. The power output of an engine depends in part on the energy density of the fuel being burnt. Fuels of different octane ratings may have similar densities, but because switching to a higher octane fuel does not add more hydrocarbon content or oxygen, the engine cannot develop more power.

However, burning fuel with a lower octane rating than that for which the engine is designed often results in a reduction of power output and efficiency. Many modern engines are equipped with a knock sensor (a small piezoelectric microphone), which sends a signal to the engine control unit, which in turn retards the ignition timing when detonation is detected. Retarding the ignition timing reduces the tendency of the fuel-air mixture to detonate, but also reduces power output and fuel efficiency. Because of this, under conditions of high load and high temperature, a given engine may have a more consistent power output with a higher octane fuel, as such fuels are less prone to detonation. Some modern high performance engines are actually optimized for higher than pump premium (93 AKI in the US). The 2001 - 2007 BMW M3 with the S54 engine is one such car. Car and Driver magazine tested a car using a dynamometer, and found that the power output increased as the AKI was increased up to approximately 96 AKI.

Most fuel filling stations have two storage tanks (even those offering 3 or 4 octane levels): those motorists who purchase intermediate grade fuels are given a mixture of higher and lower octane fuels. "Premium" grade is fuel of higher octane, and the minimum grade sold is fuel of lower octane. Purchasing 91 octane fuel (where offered) simply means that more fuel of higher octane is blended with commensurately less fuel of lower octane, than when purchasing a lower grade. The detergents and other additives in the fuel are often, but not always, identical.

The octane rating was developed by chemist Russell Marker at the Ethyl Corporation c1926. The selection of n-heptane as the zero point of the scale was due to the availability of very high purity n-heptane, not mixed with other isomers of heptane or octane, distilled from the resin of the Jeffrey Pine. Other sources of heptane produced from crude oil contain a mixture of different isomers with greatly different ratings, which would not give a precise zero point.

Regional variations

The selection of octane ratings available at the pump can vary greatly from region to region.

  • Australia: "regular" unleaded fuel is 91 RON, "premium" unleaded with 95 RON is widely available, and 98 RON fuel is also reasonably common. Shell used to sell 100 RON petrol (5% ethanol content) from a small number of service stations, most of which are located in major cities (stopped in August 2008).[18] United Petroleum sells 100 RON unleaded fuel (10% ethanol content) at a small number of its service stations (originally only two, but it has now expanded to 19 outlets).[19][20]
  • Bahrain: 90 and 95 (RON), standard in all petrol station in the country and advertised as (Jayyid) for Regular or 90 and (Mumtaz) for Premium or 95.
  • China: 93 and 97 (RON) are commonly offered. In limited areas higher rating such as 99 RON is available. In some rural areas it can be difficult to find fuel with over 93 RON.
  • Egypt: 80 RON is commonly used for all taxis and old cars and is the predominant rating in rural areas. 90 RON and 92 RON are available at almost all gas stations with a negligible price difference between them. 95 RON is becoming more common especially in the big cities and upscale suburbs. All fuels are unleaded.
  • Finland: 95 and 98 (RON), advertised as such, at each gas station. Most cars run on 95, but 98 is available for high-performance vehicles. Shell offers V-Power, advertised as "over 99 octane", instead of 98. In the beginning of 2011 95 RON is replaced by 95E10, and 98 RON will be advertised as 98E5.
  • Germany: "Super E10" 95 RON and "Super Plus E5" 98 RON are available practically everywhere. Big suppliers like Shell or Aral offer 100 RON gasoline (Shell V-Power, Aral Ultimate) at almost every fuel station. "Normal" 91 RON is only rarely being offered, because lower production amounts make it more expensive than "Super" 95 RON, so it is often not offered any more. Due to a new European Union law, gas stations are being required to offer and sell a minimum rate of the new mixture of "Super" 95 RON with up to 10% Ethanol branded as "Super E10" since early 2011. Due to that process the big suppliers are discontinuing the average "Super E5" 95 RON with <5% Ethanol so cars without the capability for using E10 need to use 98 RON petrol instead.
  • Hong Kong: only 98 RON and 99 RON are available in the market. There have been calls to re-introduce 95 RON, but the calls have been rejected by all petrol station chains, citing that 95 RON was phased out because of market forces.
  • India: India's Ordinary And Premium Petrols are of 89–91 RON. The premium petrols are generally ordinary fuels with additives, that do not really change the octane value. Two variants, "Speed 93" and "Speed 97", were launched, with RON values of 93 and 97. India's economy-class vehicles usually have compression ratios under 10:1, thus enabling them to use lower-quality petrol without engine knocking.[citation needed]
  • Indonesia: Indonesia's "Premium" petrol rated at 88 RON and being subsidized it cost only about US$0.50/liter. Other options are "Pertamax" rated at 92 RON and the "Pertamax Plus" rated at RON 95, which is the highest octane available for automotive gasoline in Indonesia.
  • Ireland: 95 RON "unleaded" is the only petrol type available through stations, although E5 (99 RON) is becoming more commonplace.
  • Italy: 95 RON is the only compulsory gasoline offered (verde, "green"), only a few fuel stations (Agip, IP, IES, OMV) offer 98 RON as the premium type, many Shell and Tamoil stations close to the cities offer also V-Power Gasoline rated at 100 RON
  • Israel: 95 RON & 98 RON are normally available at most petrol stations. 96 RON is also available at a large number of gas stations but 95 RON is more preferred because it's cheaper and performance differences aren't very wide and noticeable. "Regular" fuel is 95 RON. All variants are unleaded.
  • Malaysia: the "regular" unleaded fuel is 95 RON, "premium" fuel is rated at 97 RON(but for Shell 97 RON is V-Power, and Shell's V-Power Racing is rated at 97 RON.)
  • Montenegro: 95 RON is sold as a "regular" fuel. As a "premium" fuel, 98 RON is sold. Both variants are unleaded.
  • Netherlands: 95 RON "Euro" and 98 RON "Super" are sold at practically every station. Shell V-Power is a 97 RON (labelled as 95 due to the legalities of only using 95 or 98 labelling), some independent test have shown that one year after introduction it was downgraded to 95 RON, whereas in neighboring Germany Shell V-Power consists of the regular 100 RON fuel.
  • New Zealand: 91 RON "Regular" and 95 RON "Premium" are both widely available. 98 RON is available instead of 95 RON at some service stations in larger urban areas.
  • Philippines: A brand of Petron, Petron Blaze is rated at 100 RON (the only brand of gasoline in the Philippines without an ethanol blend). Other "super premium" brands like Petron XCS, Calex Gold, Shell V-Power are rated at 95-97 RON, while Petron Xtra Unleaded, Caltex Silver, and Shell Super Unleaded are rated at 93 RON.
  • Poland: Eurosuper 95 (RON 95) is sold in every gas station. Super Plus 98 (RON 98) is available in most stations, sometimes under brand (Orlen - Verva, BP - Ultimate, Shell - V-Power) and usually containing additives. Shell offers V-Power Racing fuel which is rated RON 100.
  • Russia and CIS countries: 80 RON (76 MON) is the minimum available, the standard is 92 RON and 95 RON.
  • South Africa: "regular" unleaded fuel is 95 RON in coastal areas with most fuel stations optionally offering 97 RON. Inland (higher elevation) "regular" unleaded fuel is 93 RON; once again most fuel stations optionally offer 95 RON.
  • Spain: 95 RON "Euro" is sold in every station with 98 RON "Super" being offered in most stations. Many stations around cities and highways offer other high-octane "premium" brands.
  • Sri Lanka: In Ceypetco filling stations, 90 RON is the regular petrol and 95 RON is called 'Super Petrol', which comes at a premium price. In LIOC filling stations, 90 RON remains as regular petrol and 92 RON is available as 'Premium Petrol'. The cost of premium petrol is lower than the cost of super petrol.
  • Taiwan: 92 RON, 95 RON and 98 RON are widely available at gas stations in Taiwan.
  • Turkey: 95 RON and 98 RON are widely available in gas stations. 92 RON (Regular) has been dropped in 2006.
  • Ukraine: the standard gasoline is 95 RON, but 92 RON gasoline is also widely available and popular as a less expensive replacement for 95 RON gasoline. 80 RON gasoline is available for old cars and motorcycles.
  • United Kingdom: 'regular' petrol has an octane rating of 95 RON, with 97 RON fuel being widely available as the Super Unleaded. Tesco and Shell both offer 99 RON fuel. In April of 2006, BP started a public trial of the super-high octane petrol BP Ultimate Unleaded 102, which as the name suggests, has an octane rating of 102 RON.[21] Although BP Ultimate Unleaded (with an octane rating of 97 RON) and BP Ultimate Diesel are both widely available throughout the UK, BP Ultimate Unleaded 102 was available throughout the UK in only 10 filling stations, and was priced at about two and half times more than their 97 RON fuel. In March of 2010, BP stopped sales of Ultimate Unleaded 102, citing the closure of their specialty fuels manufacturing facility.[22] Shell V-Power is also available, but in a 99 RON octane rating, and Tesco fuel stations also supply the Greenergy produced 99 RON "Tesco 99".
  • United States: in the US octane rating is displayed in AKI. In the Rocky Mountain (high elevation) states, 85 AKI (90 RON) is the minimum octane, and 91 AKI (95 RON) is the maximum octane available in fuel[citation needed]. The reason for this is that in higher-elevation areas, a typical naturally-aspirated engine draws in less air mass per cycle because of the reduced density of the atmosphere. This directly translates to less fuel and reduced absolute compression in the cylinder, therefore deterring knock. It is safe to fill a carbureted car that normally takes 87 AKI fuel at sea level with 85 AKI fuel in the mountains, but at sea level the fuel may cause damage to the engine. A disadvantage to this strategy is that most turbocharged vehicles are unable to produce full power, even when using the "premium" 91 AKI fuel. In some east coast states, up to 94 AKI (98 RON) is available [4]. In Colorado as well as parts of the Midwest (primarily Minnesota, Iowa, Illinois and Missouri) ethanol-based E-85 fuel with 105 AKI is available [5]. Often, filling stations near US racing tracks will offer higher octane levels such as 100 AKI[citation needed] . California fuel stations will offer 87, 89, and 91 AKI (91, 93 and 95 RON) octane fuels, and at some stations, 100 AKI or higher octane, sold as racing fuel.
  • Venezuela: 91 RON and 95 RON gasoline is available nationwide, in all PDV gas stations. 95 RON petrol is the most widely used in the country, although most cars in Venezuela would work with 91 RON gasoline. This is because petrol prices are heavily subsided by the government. All gasoline in Venezuela is unleaded.
  • Vietnam: 92 is in every gas station and 95 is in the urban areas.

See also

References

  1. ↑ Script error
  2. ↑ http://www.texacoursa.com/glossary/r.html
  3. ↑ http://www.texacoursa.com/glossary/m.html
  4. ↑ http://www.runyard.org/jr/CFR/OctaneExplanation.htm
  5. ↑ Petroleum and Coal, Purdue, http://chemed.chem.purdue.edu/genchem/topicreview/bp/1organic/coal.html
  6. ↑ (PDF), IUPAC, http://www.iupac.org/publications/pac/1983/pdf/5502x0199.pdf
  7. ↑ Johnson Operation and Maintenance Manual, 1999
  8. ↑ [1]
  9. ↑ Exxon Mobil Avgas product description
  10. ↑ [2]
  11. ↑ [3]
  12. ↑ BP Ultimate 102
  13. ↑ 13.013.113.213.313.413.5 A. T. Balaban, L. B. Kier, and N. Josh, MATCH (Commun. Math. Chem.) 28 (1992) 13–27.
  14. ↑ Changes in Gasoline IV, sponsored by Renewable Fuels Foundation
  15. ↑ 15.015.115.215.3 "'Impact of alcohol–gasoline fuel blends on the performance and combustion characteristics of an SI engine'". http://dx.doi.org/10.1016/j.fuel.2010.01.032. Retrieved 2011-04-17.
  16. ↑ 16.016.1 Script error
  17. ↑ LIQUID HYDROGEN AS A PROPULSION FUEL,1945-1959
  18. ↑ http://en.wikipedia.org/wiki/Shell_V-Power
  19. ↑ http://www.unitedpetroleum.com.au/index.asp?pgID=65
  20. ↑ http://www.unitedpetroleum.com.au/distributor-premium100-locations.asp
  21. ↑ http://www.bp.com/liveassets/bp_internet/bp_ultimate/STAGING/brand_assets/downloads_pdfs/pq/bp_ultimate_uk_102_final_press_release.pdf
  22. ↑ http://www.bp.com/sectiongenericarticle.do?categoryId=6621&contentId=7060376

Further reading

  • SAE standard J 1297 Alternative Automotive Fuels, Sept 2002
  • Khoo, Kenny K. Understanding Octane and its Related Components. Yellowknife: Smithsonian Press, 2006.

External links

Octane ratings of some hydrocarbons

Information in general

www.oilfieldwiki.com

90s videos, page 5 - XVIDEOS.COM

Taboo 16

Hefferson420666 - 1.7M Views - 1h 18 min

Lisa Ann The Cheating Slutty Wife www.sexyamate...

Bestofpron - 417.6k Views - 22 min

A lucky bartender banging italian milf

Jessica Rizzo - 137.2k Views - 14 min

Amazing Models Find StrapOn Dildo In Their Gift...

Sexytimevidz - 146.6k Views - 15 min

Cameo, Randy West in well-known extremely hot c...

The Classic Porn - 182.1k Views - 14 min

Eve Angel and Zafira get each other off with to...

Strelok13 - 246.8k Views - 4 min

Cumisha Amado, Alex Sanders

46.3k Views - 24 min

Corporate Fantasy (1999)

Maloziton - 290.8k Views - 1h 41 min

Busty masseuse blowjobs and cum facialed under ...

Dcups - 106.4k Views - 5 min

Erika Bella - Fucking Instinct (La moglie bugia...

1.8M Views - 11 min

Soapy Sneusal Massage In Bath

Touch The Body - 251.4k Views - 7 min

(lela star) Slut Pornstar Lick And Suck And Rid...

Lolamartin - 121.2k Views - 7 min

Metro - Blowjob Fantaies 15 - scene 4 - extract 1

More Free Porn - 58.8k Views - 4 min

Forbidden Games

Softcoreforall - 219.4k Views - 4 min

Alien Sex Files 3

Content-for-18blogspot - 147.3k Views - 3 min

Chasey Lain Fucked Hard

Girloftheyear1 - 62.3k Views - 18 min

90s porn stars

Pattie-rasmussen28 - 12.7k Views - 5 min

Her double personality

2.2M Views - 17 min

Metro - Blowjob Fantaies 15 - scene 8 - extract 1

More Free Porn - 94.7k Views - 5 min

LBO - M Series 20 - Full movie

More Free Porn - 255.1k Views - 1h 10 min

Nici begs for a dick

Maleskinny - 106.5k Views - 17 min

Metro - Size Matters - scene 2

More Free Porn - 167.4k Views - 19 min

Kimberly Castaic & TinaTalon in TheProfession

Wezley - 39.2k Views - 6 min

Jordan had some fun

Puzzledjumping - 63.8k Views - 18 min

www.xvideos.com

90 THB to RON - ฿90 Thai baht to Romanian leu Conversion

Conversion from 90 Thai baht to Romanian leu using latest Foreign Currency Exchange Rates.

90 THB = 10.86 RON 90 Thai baht converts to 10.86 Romanian leu. check conversion rate for ↺ 90 RON to THB

AED - UAE DirhamAFN - Afghan AfghaniALL - Albanian LekAMD - Armenian DramAOA - Angolan KwanzaARS - Argentine PesoAUD - Australian DollarAWG - Aruban FlorinAZN - Azerbaijani ManatBAM - Bosnia and Herzegovina convertible markBBD - Barbadian DollarBDT - Bangladeshi TakaBGN - Bulgarian LevBHD - Bahraini DinarBIF - Burundian FrancBMD - Bermudian DollarBND - Brunei DollarBOB - Bolivian BolivianoBRL - Brazilian RealBSD - Bahamian DollarBTN - Bhutanese NgultrumBTC - BitcoinBWP - Botswana PulaBYR - Belarusian RubleBZD - Belize DollarCAD - Canadian DollarCDF - Congolese FrancCHF - Swiss FrancCLP - Chilean PesoCNY - Chinese YuanRMB - Chinese Yuan RenminbiCOP - Colombian PesoCRC - Costa Rican ColónCUP - Cuban Convertible PesoCVE - Cape Verdean EscudoCZK - Czech KorunaDJF - Djiboutian FrancDKK - Danish KroneDOP - Dominican PesoDZD - Algerian DinarEGP - Egyptian poundERN - Eritrean nakfaETB - Ethiopian birrEUR - EuroFJD - Fijian DollarFKP - Falkland Islands poundGBP - British PoundGEL - Georgian LariGHS - Ghana CediGMD - Gambian DalasiGNF - Guinean FrancGTQ - Guatemalan QuetzalGYD - Guyanese DollarHKD - Hong Kong DollarHNL - Honduran LempiraHRK - Croatian KunaHTG - Haitian GourdeHUF - Hungarian ForintIDR - Indonesian RupiahILS - Israeli New ShekelIMP - Manx poundINR - Indian RupeeIQD - Iraqi DinarIRR - Iranian RialISK - Icelandic KrónaJEP - Jersey PoundJMD - Jamaican DollarJOD - Jordanian DinarJPY - Japanese YenKES - Kenyan ShillingKGS - Kyrgyzstani SomKHR - Cambodian RielKMF - Comorian FrancKPW - North Korean WonKRW - South Korean WonKWD - Kuwaiti DinarKYD - Cayman Islands DollarKZT - Kazakhstani TengeLAK - Lao KipLBP - Lebanese PoundLKR - Sri Lankan RupeeLRD - Liberian DollarLSL - Lesotho LotiLTL - Lithuanian LitasLVL - Latvian LatsLYD - Libyan DinarMAD - Moroccan DirhamMDL - Moldovan LeuMGA - Malagasy ariaryMKD - Macedonian denarMMK - Burmese kyatMNT - Mongolian tögrögMOP - Macanese patacaMRO - Mauritanian ouguiyaMUR - Mauritian rupeeMVR - Maldivian rufiyaaMWK - Malawian kwachaMXN - Mexican pesoMYR - Malaysian ringgitMZN - Mozambican meticalNAD - Namibian dollarNGN - Nigerian nairaNIO - Nicaraguan córdobaNOK - Norwegian kroneNPR - Nepalese rupeeNZD - New Zealand dollarOMR - Omani rialPAB - Panamanian balboaPEN - Peruvian nuevo solPGK - Papua New Guinean kinaPHP - Philippine pesoPKR - Pakistani rupeePLN - Polish złotyPRB - Transnistrian rublePYG - Paraguayan guaraníQAR - Qatari riyalRON - Romanian leuRSD - Serbian dinarRUB - Russian rubleRWF - Rwandan francSAR - Saudi riyalSBD - Solomon Islands dollarSCR - Seychellois rupeeSDG - Sudanese PoundSEK - Swedish kronaSGD - Singapore dollarSHP - Saint Helena poundSLL - Sierra Leonean leoneSOS - Somali shillingSRD - Surinamese dollarSSP - South Sudanese poundSTD - São Tomé and Príncipe dobraSVC - Salvadoran colónSYP - Syrian poundSZL - Swazi lilangeniTHB - Thai bahtTJS - Tajikistani somoniTMT - Turkmenistan manatTND - Tunisian dinarTOP - Tongan paʻangaTRY - Turkish liraTTD - Trinidad and Tobago dollarTWD - New Taiwan dollarTZS - Tanzanian shillingUAH - Ukrainian hryvniaUGX - Ugandan ShillingUSD - US DollarUYU - Uruguayan PesoUZS - Uzbekistani somVEF - Venezuelan bolívarVND - Vietnamese đồngVUV - Vanuatu vatuWST - Samoan tālāXAF - Central African CFA francXCD - East Caribbean dollarXOF - West African CFA francXPF - CFP francYER - Yemeni rialZAR - South African RandZMW - Zambian kwachaZWL - Zimbabwean dollar

AED - UAE DirhamAFN - Afghan AfghaniALL - Albanian LekAMD - Armenian DramAOA - Angolan KwanzaARS - Argentine PesoAUD - Australian DollarAWG - Aruban FlorinAZN - Azerbaijani ManatBAM - Bosnia and Herzegovina convertible markBBD - Barbadian DollarBDT - Bangladeshi TakaBGN - Bulgarian LevBHD - Bahraini DinarBIF - Burundian FrancBMD - Bermudian DollarBND - Brunei DollarBOB - Bolivian BolivianoBRL - Brazilian RealBSD - Bahamian DollarBTN - Bhutanese NgultrumBTC - BitcoinBWP - Botswana PulaBYR - Belarusian RubleBZD - Belize DollarCAD - Canadian DollarCDF - Congolese FrancCHF - Swiss FrancCLP - Chilean PesoCNY - Chinese YuanRMB - Chinese Yuan RenminbiCOP - Colombian PesoCRC - Costa Rican ColónCUP - Cuban Convertible PesoCVE - Cape Verdean EscudoCZK - Czech KorunaDJF - Djiboutian FrancDKK - Danish KroneDOP - Dominican PesoDZD - Algerian DinarEGP - Egyptian poundERN - Eritrean nakfaETB - Ethiopian birrEUR - EuroFJD - Fijian DollarFKP - Falkland Islands poundGBP - British PoundGEL - Georgian LariGHS - Ghana CediGMD - Gambian DalasiGNF - Guinean FrancGTQ - Guatemalan QuetzalGYD - Guyanese DollarHKD - Hong Kong DollarHNL - Honduran LempiraHRK - Croatian KunaHTG - Haitian GourdeHUF - Hungarian ForintIDR - Indonesian RupiahILS - Israeli New ShekelIMP - Manx poundINR - Indian RupeeIQD - Iraqi DinarIRR - Iranian RialISK - Icelandic KrónaJEP - Jersey PoundJMD - Jamaican DollarJOD - Jordanian DinarJPY - Japanese YenKES - Kenyan ShillingKGS - Kyrgyzstani SomKHR - Cambodian RielKMF - Comorian FrancKPW - North Korean WonKRW - South Korean WonKWD - Kuwaiti DinarKYD - Cayman Islands DollarKZT - Kazakhstani TengeLAK - Lao KipLBP - Lebanese PoundLKR - Sri Lankan RupeeLRD - Liberian DollarLSL - Lesotho LotiLTL - Lithuanian LitasLVL - Latvian LatsLYD - Libyan DinarMAD - Moroccan DirhamMDL - Moldovan LeuMGA - Malagasy ariaryMKD - Macedonian denarMMK - Burmese kyatMNT - Mongolian tögrögMOP - Macanese patacaMRO - Mauritanian ouguiyaMUR - Mauritian rupeeMVR - Maldivian rufiyaaMWK - Malawian kwachaMXN - Mexican pesoMYR - Malaysian ringgitMZN - Mozambican meticalNAD - Namibian dollarNGN - Nigerian nairaNIO - Nicaraguan córdobaNOK - Norwegian kroneNPR - Nepalese rupeeNZD - New Zealand dollarOMR - Omani rialPAB - Panamanian balboaPEN - Peruvian nuevo solPGK - Papua New Guinean kinaPHP - Philippine pesoPKR - Pakistani rupeePLN - Polish złotyPRB - Transnistrian rublePYG - Paraguayan guaraníQAR - Qatari riyalRON - Romanian leuRSD - Serbian dinarRUB - Russian rubleRWF - Rwandan francSAR - Saudi riyalSBD - Solomon Islands dollarSCR - Seychellois rupeeSDG - Sudanese PoundSEK - Swedish kronaSGD - Singapore dollarSHP - Saint Helena poundSLL - Sierra Leonean leoneSOS - Somali shillingSRD - Surinamese dollarSSP - South Sudanese poundSTD - São Tomé and Príncipe dobraSVC - Salvadoran colónSYP - Syrian poundSZL - Swazi lilangeniTHB - Thai bahtTJS - Tajikistani somoniTMT - Turkmenistan manatTND - Tunisian dinarTOP - Tongan paʻangaTRY - Turkish liraTTD - Trinidad and Tobago dollarTWD - New Taiwan dollarTZS - Tanzanian shillingUAH - Ukrainian hryvniaUGX - Ugandan ShillingUSD - US DollarUYU - Uruguayan PesoUZS - Uzbekistani somVEF - Venezuelan bolívarVND - Vietnamese đồngVUV - Vanuatu vatuWST - Samoan tālāXAF - Central African CFA francXCD - East Caribbean dollarXOF - West African CFA francXPF - CFP francYER - Yemeni rialZAR - South African RandZMW - Zambian kwachaZWL - Zimbabwean dollar

✔ Convert   ⇄

www.currencyconverterx.com


Смотрите также