5.5. Уплотнительные прокладки. Прокладки стойкие к бензину


Материалы для изготовления прокладок

В трубопроводных системах и трубопроводной арматуре используют прокладки различных конструкций. Но не меньшим разнообразием отличаются материалы, из которых их изготавливают. В их число входят: бумага, картон, целлюлоза, фибра, резина, асбест, графит, металлы (прокладки металлические ─ из стали, меди, алюминия бронзы и т. д.), паронит, широкий спектр полимерных материалов ─ полиэтилен, фторопласт, поливинилхлорид и другие.

Требования к прокладочным материалам

Условия обеспечения герметичности в прокладках, как и в сальниковых уплотнениях, зависят от свойств рабочей среды ─ ее давления, температуры, агрессивности. Разуплотнение прокладок во фланцевых соединениях может быть вызвано не только абсолютными значениями температуры, но и ее колебаниями, изменяющими размеры прокладки и механические свойства материала, из которого прокладка изготовлена. Повышение температуры создает пластическую деформацию прокладки, вызываемую увеличением затяга болтов или шпилек. При понижении температуры, напротив, затяг снижается, и прокладочное соединение теряет плотность.

В соответствии с задачами, решаемыми прокладками, к прокладочным материалам предъявляется целый набор требований, наиболее важными из которых являются:

  • Дешевизна и доступность

    Эти качества важны как фактор снижения эксплуатационных расходов трубопроводной арматуры в связи с большими объемами использования прокладочных материалов и необходимостью их частой замены;

  • Упругость

    Упругость ─ качество, необходимое для обеспечения лучшей герметичности уплотняемых с помощью прокладок соединений. Например, при искривлениях уплотняемых поверхностей материал прокладки должен компенсировать эти искривления даже при не слишком больших усилиях зажатия, чтобы предупредить возможность появления опасных, приводящих к потере герметичности пустот между соединяемыми деталями. Или при колебаниях температуры компенсировать упругими свойствами вызванное температурным расширением изменение размеров прокладки. В отдельных документах это искривление (отклонение от параллельности) может быть регламентировано. Например, в «ГОСТ 32569-2013. Межгосударственный стандарт. Трубопроводы технологические стальные. Требования к устройству и эксплуатации на взрывопожароопасных и химически опасных производствах» указано, что при сборке фланцевых соединений сборочных единиц, допускаемые отклонения от параллельности уплотнительных поверхностей фланцев не должны превышать 10% от толщины прокладки.

  • Механическая прочность

    Прокладка не должна разрушаться под воздействием механических нагрузок, связанных с ее монтажом, т. е. при затягивании болтов или шпилек; в то же время материал прокладки не должен быть таким твердым и прочным, чтобы деформировать уплотняемые поверхности, что может иметь место при использовании в качестве прокладочных материалов металлов.

  • Температуроустойчивость

    Материал прокладки не должен терять свои механические свойства при воздействии высоких и низких температур. Иначе он расплавится и вытечет при высоких температурах или начнет трескаться и рассыпаться при низких;

  • Коррозионная устойчивость

    Подобно механическим нагрузкам и высоким температурам химическое воздействие рабочей среды способно вызвать разрушение или, по меньшей мере, потерю функциональности прокладки.

Прокладки картонные: бумага, картон, целлюлоза, фибра

Картон, бумага, целлюлоза и фибра ─ родственные материалы. А бумага и картон ─ фактически один и тот же.

Различие между бумагой и картоном основывается, прежде всего, на оценке их толщины и массы. Картон толще, обладает более высокой жесткостью, отличается низкой степенью воспламеняемости.

У картона немало «специальностей»: кровельный картон, обувной картон, электротехнический картон, тарный картон. Прокладки из целлюлозного картона используются в трубопроводной арматуре в ограниченном диапазоне ─ при температуре до 120°C и давлении до 6 кГ/см2. Для изготовления прокладок применяют водонепроницаемый картон (с низкими показателями водопоглощаемости и линейной деформации при увлажнении и высыхании) и прокладочный картон. Последний бывает двух марок: А ─ для прокладок, используемых в среде воды, масла и бензина, и Б ─ для прокладок, используемых в воде и воздухе. Предел прочности при растяжении в поперечном направлении картона марки А составляет не менее 18 МПа, а картона марки Б ─ не менее 16 или 20 МПа в зависимости от толщины.

Картон марки А изготавливают из небеленой хвойной целлюлозы; в картон марки Б допустимо добавлять макулатуру.

Предназначенный для изготовления уплотнительных прокладок во фланцевых и других соединениях прокладочный картон используют также для изготовления лекал в легкой промышленности и в качестве основы для картин, написанных маслом.

По своим параметрам с прокладкой из картона сходна фибровая прокладка. Листовая фибра ─ твердый монолитный материал, получаемый в результате обработки нескольких слоев бумаги-основы. Для изготовления прокладок трубопроводов применяется фибра прокладочная кислородостойкая (ФПК) и фибра касторово-глицериновая.

Резиновые прокладки

Прокладки резиновые

Резина (на латыни resina означает смола) ─ продукт вулканизации каучука ─ обладает немалым числом достоинств, делающих целесообразным ее применение в качестве материала для изготовления прокладок. Главные среди них ─ высокая эластичность и непроницаемость для жидкостей и газов.

Различают резины, изготавливаемые на основе натурального каучука и его сочетания с другими каучуками, а также резины на основе синтетических каучуков. Отличительная особенность резины ─ способность к обратимым упругим деформациям в чрезвычайно широком температурном диапазоне. Этому способствует наличие в составе технической резины немалого числа (иногда нескольких десятков) компонентов. Состав и технологии изготовления предопределили большое разнообразие видов резин и областей их применения. В т. ч. для уплотнения соединений.

Прокладки из резиновой пластины ТМКЩ (тепломорозокислотощелочестойкой) используют в трубопроводной арматуре, управляющей такими средами как воздух, азот, вода (пресная, морская, техническая), кислоты и щелочи концентрацией до 20% при температуре от −40 до +80 OС.

Морозостойкость резины означает ее способность сохранять эластичность и другие ценные свойства при низких температурах. Добиться повышенной вплоть до −55°C морозостойкости резины можно, управляя кристаллизацией каучуков, подбирая их соответствующие смеси, добавляя пластификаторы и наполнители.

В несколько более узком температурном диапазоне (от −30 до +80°C) работают прокладки из пластины резиновой МБС (маслобензостойкой). В соответствии с названием резины, сделанные из нее прокладки используют в арматуре, перемещающей масла, бензин и другие виды топлива на нефтяной основе, а также воздух, азот и иные газы.

В сторону более высоких температур смещен рабочий диапазон теплостойкой резины. Выполненные из нее прокладки можно применять при температурах от −30 до +90°C, а для пара при температуре до 140°C. Теплостойкость резины определяется по температуре, после достижения которой происходит снижение предела прочности и относительного удлинения.

Еще один вид резины, из которого изготавливают уплотнительные прокладки, ─ «пищевая» резина, безопасная при соприкосновении с пищевыми продуктами. Прокладки из нее можно использовать при перемещении таких рабочих сред как молоко, растительное масло, фруктовые соки, пиво и т.д.

Асбестовые прокладки

Асбест получают из минерального сырья. Асбест как почти никакой другой материал способен противостоять огню. Асбестовые прокладки особенно уместны в трубопроводной арматуре, предназначенной для управления потоками высокотемпературных или горючих пожароопасных сред, их можно использовать при температуре до 600°C.

Температура плавления асбестового волокна превышает 1000°C. Хотя при росте температуры прочность асбеста несколько снижается. Так, при 500°C он теряет примерно треть своей прочности. Все виды асбеста (а их параметры варьируются в зависимости от месторождения) достаточно устойчивы к щелочам, а асбест отдельных месторождений устойчив к кислотам.

Асбестовые прокладки могут изготавливать из асбестового картона: картон асбестовый КАОН-1, КАОН-2 ─ общего назначения; КАП ─ картон асбестовый прокладочный. Для прокладочного картона КАП нормативными документами предусмотрен ряд толщин: 1,3, 1,6, 1,9, 2,5 мм.

Асбестовая прокладка может армироваться мелкой латунной или никелевой проволокой.

Для уплотнений в качестве прокладки используется асбестовый шнур, в виде спирали укладываемый на поверхность фланца.

Хорошие эксплуатационные параметры имеют прокладки из колец различной формы и сечений, с сердцевиной из асбеста, а облицовкой из тонкого пластмассового или металлического листа.

Паронит. Паронитовые прокладки

Паронит ─ листовой прокладочный материал, получаемый в результате прессования асбокаучуковой массы, состоящей из асбеста, каучука и порошковых ингредиентов. Прокладки из паронита позволяют добиться необходимой герметичности соединений различного типа в условиях воздействия агрессивных сред, высоких температур и давления. Прокладки из паронита применяют для уплотнения соединений, работающих:

в воде и паре при давлении 5 МПа и температуре 450°C;

нефти и нефтепродуктах при температуре 200─400°C и давлении 7─4 МПа;

а также жидком и газообразном кислороде, этиловом спирте и т. д. Для улучшения механических свойств паронитовых прокладок их армируют металлической сеткой.

Выпускаются различные марки паронита. Прокладки изготавливают из паронита общего назначения паронит ПОН, паронита маслобензостойкого — ПМБ, паронита кислотостойкого ПК.

Последний может использоваться для изготовления прокладок, работающих в среде кислот, щелочей, окислителей, нитрозных и других агрессивных газов, органических растворителей. Прокладки из паронита марки ПМБ функционируют в среде тяжелых и легких нефтепродуктов, масел, рассолов, сжиженных и газообразных углеводородов.

Паронит общего назначения ПОН пригоден для изготовления прокладок, контактирующих с пресной перегретой водой, насыщенным и перегретым паром, воздухом, сухими нейтральными и инертными газами, водными растворами солей, жидким и газообразным аммиаком, спиртами, жидкими кислородом и азотом, тяжелыми и легкими нефтепродуктами.

Прокладки из пластиковых материалов

Внедрение полимеров (пластиков) произвело настоящий переворот в промышленных технологиях. Сегодня они занимают все более значимое место в производстве уплотнительных материалов. Для изготовления прокладок используют такие широко известные пластики как поливинилхлорид (прокладки ПВХ) и полиэтилен. Но и прокладка полиэтиленовая, и прокладка поливинилхлоридная по совокупности своих эксплуатационных параметров уступают прокладкам из фторопласта. На сегодняшний день именно фторопластовые уплотнительные материалы вообще и фторопластовые прокладки, в частности, являются наиболее востребованными.

Фторопласт ─ материал химически стойкий и достаточно температуроустойчивый (сохраняет свои механические свойства при температуре от минус до плюс 200 градусов Цельсия) ─ применятся для изготовления прокладок любых сечений, как конструктивно простых, так и сложных, в т. ч. в комбинации с асбестом, резиной, сталью. В любых формах (лист, лента, жгут) фторопласт в качестве уплотнителя податлив, удобен в использовании, способен уплотнять даже изношенные и неровные поверхности, прекрасно проявляет себя на сложных контурах.

Прокладки металлические

Металлические прокладки изготавливают из стали, алюминия, меди и медных сплавов, монель-металла, никеля, свинца и других металлов. Достоинства металлических прокладок ─ сохранение герметичности уплотняемого соединения при воздействии высоких давлений и температур. Коэффициент линейного расширения металлической прокладки очень близок к аналогичному показателю материалов других элементов соединения (фланцев, болтов, шпилек), что снижает негативное влияние резких колебаний температуры. Металлические прокладки отличаются ремонтопригодностью.

Вместе с тем, в силу своих физико-механических свойств, прокладки металлические для обеспечения необходимой герметичности соединения требуют приложения больших усилий, что сопровождается дополнительными нагрузками на крепежные детали.

Стальные прокладки используются в трубопроводной арматуре, где рабочими средами являются водяной пар, нефтепродукты, вода. Для этих же рабочих сред, плюс некоторые кислоты, могут применяться алюминиевые прокладки и прокладки из никеля. Прокладки из монель-металла устанавливают на трубопроводной арматуре, контактирующей с морской водой. Медные прокладки устойчивы к действию щелочей, а свинцовые ─ кислот.

Графитовые прокладки

Широкий спектр уплотнительных материалов изготавливается из графита, чье использование, как и применение фторопласта, стало одним из знаковых трендов развития уплотнительных технологий. Благодаря своим антифрикционным свойствам графит очень эффективен при герметизации подвижных соединений. Но этот материал находит применение и в качестве уплотнения неподвижных соединений. Его используют при изготовлении спирально-навитых прокладок. Для герметизации фланцевых соединений арматуры применяется армированный графитовый лист, графитовая фольга, уплотнительные ленты на основе графита, уплотнительные прокладки из терморасширенного графита (ПУТГ), прокладки из графита (ПФГ).

Благодаря разнообразию используемых для изготовления прокладок материалов, производителям трубопроводной арматуры и тем, кто ее эксплуатирует, удается обеспечить требуемую герметичность уплотняемых с их использованием соединений. А таких соединений, как в самой трубопроводной арматуре, так и в трубопроводных системах в целом, совсем немало.

armatek.ru

Формирователи прокладок — все, что Вы должны о них знать

Мнение среди мастеров по-поводу использования новых технологий и инструментов разделяется. Одни предпочитают работать с классическими технологиями и инструментами. Они привычнее и — кажется — удобнее. Другие же считают, что разумнее потратить немного времени на изучение новых материалов, а потом убедиться, что действуют они быстрее и эффективнее.

Это лирическое отступление точно подходит под такой тип герметиков, как формирователь прокладок. Он призван изменить привычную схему ремонта и сборки деталей автомобилей, мотоциклов и велосипедов.

Зачем нужен формирователь прокладки?

Этот анаэробный герметик используется как альтернатива силиконовым, асбестовым, паронитовым и металлическим прокладкам. При нанесении анаэробный герметик-прокладка образует полимер, который заменяет испорченный материал, соединяет, фиксирует и герметизирует деталь.

Демонтаж старой прокладки и формирование новой происходит в самых разных случаях: ремонт авто- и мотодвигателя, починка водяного насоса, установка фар и многое другое.

Прокладочный герметик, по сравнению с обычной прокладкой, дает более надежное соединение за счет своих инновационных свойств:

  • анаэробный формирователь прокладок полимеризируется и прочно застывает в условиях бескислородной среды
  • защищает соединение от фреттинг-коррозии — разрушения на границе раздела двух контактирующих частей
  • стоек к истиранию, высоким механическим нагрузками и температурным перепадам.

Чтобы не разочароваться в результате, важно выбирать хорошие и качественные герметики-прокладки. Не приобретайте составы кустарного производства, выбирайте бренды от проверенных производителей.

Достоинства герметиков-прокладок

- Высокая скорость герметизации

Происходит сразу же после нанесения. А окончательная блокировка детали — всего через 15-30 минут. В условиях срочного и аварийного ремонта, для ускорения полимеризации герметика, соединение нужно затянуть с усилием.

- Стойкость в любых средах

Формирователь прокладок не боится бензина, дизельного топлива, масел и антифризов. Учитывая агрессивность этих сред, и, как следствие, всегда неожиданную порчу деталей, оправданно говорить о формирователе прокладок, как о долговечном и незаменимом сегодня материале. Сюда же относится и стойкость герметика к органическим растворителям.

- Широкий диапазон температур

Еще одним важным достоинством герметика-прокладки является возможность отлично работать и при очень низких и при очень высоких температурах — от -60 до + 150 °C.

- Абсолютная надежность

При зазорах до 0,35 мм герметик не ползет и не дает усадки. Даже при постоянных сильных вибрациях, что оптимально для авто-, мото- и велотехники, в соединении не возникнет ни малейших дефектов. А исправность всех деталей и механизмов — это гарантия сохранности жизни и здоровья человека.

Остановимся подробнее на форме выпуска и инструкции по применению для формирователя прокладок.

Выпускается герметик в компактном тюбике, напоминающем карандаш или ручку, с узким горлышком. Удобно ложится в руку и позволяет без дополнительных инструментов нанести гель на поверхность. Тюбику с гелем всегда найдется место в бардачке машины, велосипедной сумке или ящике с инструментами — это средство всегда под рукой.

Для нанесения геля не требуются специальные знания — аккуратно распределить гель по поверхности и соединить две контактные части одинаково успешно может автомеханик и автолюбитель

Нужна ли подготовка к работе с герметиком-прокладкой? Да, но минимальная. Детали следует очистить от загрязнения, обезжирить при необходимости и высушить.

Наносят герметик по периметру соединения непрерывным слоем. Если зазор при контакте двух частей детали большой, то средство распределяют сразу по двум сопрягаемым поверхностям. Затем обе части соединяют и ожидают полимеризации. Как только соединение блокируется, детали очищают от излишков геля с помощью салфетки. Помните, что гель на открытом воздухе не отвердевает и удалить его, поэтому, легко. Если он остался гелеобразным снаружи, это не значит, что он не затвердел внутри стыка.

Что касается особенностей нанесения, то их несколько

- Работая при температуре ниже 15 °C, будьте готовы к более долгой полимеризации. Чтобы ускорить сцепление деталей, рекомендуется подогреть соединение до 40 или 60 °C и применить активатор.

- Анаэробный герметик не используется в среде чистого кислорода, хлора и прочих окислителей.

Цена на герметик формирователь прокладки доступна для знакомства с ним и тестирования, а также для закупки впрок. Такой компактный, удобный и надежный инструмент должен быть всегда под рукой у автовладельца или мотоциклиста. Не забудьте купить герметик-прокладку.

re-st.ru

5.5. Уплотнительные прокладки

К уплотнительным прокладкам манометрических приборов предъявляются специфические требования, исходя из температуры и давления измеряемой среды, ее агрессивности. Материал прокладок должен быть упругим, эластичным, легко деформироваться с целью обеспечения минимальных усилий при воздействии на резьбовые соединения деталей. Вместе с тем его прочность должна быть достаточной, чтобы при уплотнении соединения не происходило раздавливание прокладки или выжимание ее в сторону от уплотняемых поверхностей действием давления измеряемой среды.

Уплотнительные прокладки можно подразделить по материалу, форме профиля, месту установки.

На рис.5.50 показаны различные варианты установки прокладок в гнезде присоединительного штуцера манометра при уплотнении: по плоскости, по соску и по внешнему диаметру посадочного гнезда.

Рис.5.50. Схемы установок прокладок под манометрические приборы при уплотнении: а – по плоскости; б – по соску; в – по внешнему диаметру посадочного гнезда.

Наиболее распространены в нашей стране прокладки и непосредственно сами уплотнения по посадочной плоскости присоединительного штуцера манометра и его посадочного гнезда. Они наиболее просты в технологии изготовления и не требуют высокой квалификации в монтаже. Однако относительно большие площади уплотняемых поверхностей требуют существенных усилий, прилагаемых к резьбовому соединению. Снижение нагрузки на резьбу может обеспечиваться более мягким материалом прокладки и уменьшением площади уплотняемых поверхностей, что достигается изготовлением ребристой, как правило, кольцевой поверхности торца присоединительного штуцера и плоскости посадочного гнезда. Обычно в зависимости от диаметра производят одну или две торцевых проточки, что существенно повышает эффективность соединения. форме профиля уплотнительные прокладки можно подразделить на плоские, плоские с гранями, круглые, ромбовидные, в виде шестигранника, звездочатые (рис.5.51).

Рис.5.51. Виды форм профиля уплотнительных прокладок: а - плоские; б - плоские с гранями; в – круглые; г - ромбовидные; д - в виде шестигранника; е – звездочатые.

Форму профиля прокладки выбирают в зависимости от величины рабочего давления, агрессивности среды и, соответственно, материала. Так, например, плоские прокладки (рис.5.51а) из неметаллических материалов применяют для не очень больших давлений.

Материал для прокладки определяется свойствами измеряемой среды, включая агрессивность и температуру, рабочим давлением. В табл. 5.4 представлены, как пример/5-8/, материалы для выбора прокладок в зависимости от измеряемой среды, рабочего давления и температуры.

 

Рекомендуемые материалы для изготовления прокладок/5-8/

Таблица 5.4

 

Рабочая среда

Давление, МПа, не более

Темпера-

тура, оС , не более

Обозначение, наименование марки материала, тол-

щина, мм

 

 

 

 

Вода, нейтральные растворы

 

 

 

0,6

60

Резина, каучук

0,6

425

Картон латексный

6,4

250

Паронит общего назначе- ния типа ПОН толщиной 0,4… 5,0

16

300

Медь М3, отожженная, 0,4…10 мм

Без ограничений

 

250

 

Латунь Л62, 0,5…2,0 мм

 

 

 

Газы и пары инерт-

ные

0,6

60

Резина, каучук

0,6

425

Картон латексный

1,6

100

Алюминий

6,4

250

Паронит ПОН

16

100

Алюминий АД1-М, 0,3…1,0 мм

Без ограничений

 

250

 

Латунь Л62

 

Масла

2,5

200

Резина маслостойкая

4

50

Пластикат хлорвиниловый

15

100

Фибра, 0,3…1,0

 

 

Мазут

6

300

Алюминий

6,4

200

Паронит ПОН

2,5

180

Паронит электризерный типа ПЭ, 1,0… 7,5

15

100

Фибра, 0,3…1,0

15

300

Медь М3

Кислоты, щелочи и другие агрессив- ные жидкости

0,6

100

Свинец С-2, 1…15 мм

0,6

250

Фторопласт-4

2,5

100

Паронит типа ПЭ

 

Необходимо помнить, что при работе с агрессивными средами, а также со средами, которые имеют повышенную активность по отношению к медьсодержащим материалам (например, с ацетиленом), не допускается применение прокладок из меди и медных сплавов, содержащих более 70 % этого металла. Недопустим также контакт медных сплавов с аммиаксодержащими средами (см. гл. 2).

Неметаллические материалы для изготовления прокладок могут быть различными.

Паронит изготавливается из асбеста и каучука путем вулканизации и вальцевания большим давлением. Он содержит 60…70% асбестового волокна, 12…15% каучука, 15…18% минеральных наполнителей и 1,5…2% серы. Паронитовые прокладки используются для герметизации соединений импульсных линий, арматуры и подключения манометрических приборов, работающих в среде насыщенного и перегретого пара, высокотемпературных газов, воздуха, растворов щелочей и слабых растворов кислот, аммиака, масел и нефтепродуктов при температурах до 450оС. Паронит листовой выпускается следующих марок: ПОН, ПМБ, ПА, ПЭ, ПС и ПСГ. Упругость паронита невелика. Однако относительно высокая плотность позволяет применять паронитовые прокладки для больших давлений.

Паронит в своем составе имеет асбест, что не приветствуется современным здравоохранением. Посему в мире разработана большая номенклатура не содержащих асбест различных материалов для изготовления прокладок, включая графитсодержащие, работающие при более высоких температурах.

Фибра листовая представляет собой бумагу или целлюлозу, обработанную хлористым цинком и затем подвергшуюся каландрированию. Применяется для таких сред, как керосин, бензин, смазочные масла, кислород, углекислоты и др. для температур до 100° С. Уплотнительные прокладки из фибры, по отзывам производственников, отличаются высокой износостойкостью, долговечностью, обеспечивают герметичность соединения даже при небольшом усилии сжатия.

Фторопласт-4 является полимером тетрафторэтилена. Как свидетельствуют многие публикации по химической стойкости фторопласт-4 превосходит все химически стойкие полимеры, включая золото и платину. Устойчив против химического действия всех минеральных и органических кислот, щелочей, органических растворителей, окислителей и других агрессивных сред. Разрушается лишь под действием расплавленных щелочных металлов и элементарного фтора. По внешнему виду фторопласт-4 напоминает парафин, имеет белую и скользкую поверхность. Не смачивается водой и не набухает. Температура эксплуатации составляет от -195 до +250оС. Однако фторопласт-4 обладает повышенной ползучестью, увеличивающейся с ростом удельной нагрузки и температуры. Существенным недостатком фторопласта является не восстановление начальной формы после механического и высокотемпературного воздействия.

 

Для небольших давлений в качестве материалов может также использоваться кожа, фибра.

При применении металлических прокладок металл прокладок не должен пластически деформировать уплотняющие поверхности. Поэтому металл прокладки должен иметь твердость и предел текучести ниже, чем металл присоединительного штуцера манометрического прибора или подсоединяемой арматуры. Так, например, медь для прокладок применяют отожженную.

Основные металлы, наиболее часто применяемые для изготовления прокладок, приведены в таблице 5.1/5-9/.

 

Основные материалы, применяемые для изготовления уплотнительных прокладок/5-9/

Таблица 5.5.

 

 

Металл

 

Марка

Область применения

Среда

Температура, о

С

Нержавеющая сталь

Х18Н9Т, 0Х18Н10Т

Водяной пар, нефтепродукты, коррозионноактивные среды, исключая серную

кислоту

 

От -253 до

+600

Алюминий

А2

Воздух, вода. Нефтепродукты,

азотная, фосфорная и др.кислоты, сухой

хлор, сернистые газы

До 430

 

От -198 до

+300

Никель

НТ

Водяной пар Хлор и др.

 

Окислительные среды

До 430 От -180 до

+450

До 750

Монель

НМЖМц28

Морская вода, коррозионные среды Водяной пар

 

До +800

До +430

Медь

М1, М2

Растворы щелочей, низкие температуры. Недопустим для аммиака

От -180 до +300

Свинец

С2

Коррозионные среды, кислоты

От -180 до +100

 

Для изготовления прокладок возможно применение стали углеродистой специального исполнения 05кп (специальная), которая обеспечивает уплотнение при давлениях до 63 МПа и температурах до 530оС.

jumas.ru

Прокладки двигателя

Двигатель автомобиля – сложный механизм, состоящий из множества деталей. Внутри двигателя при работе непрерывной циркулируют различные технические жидкости, часть которых находится под большим давлением. Для поддержания давления на постоянном уровне и предупреждения выхода жидкостей наружу корпус двигателя должен быть герметичен. Для обеспечения герметичности служат прокладки разной формы, сделанные из различных материалов.

Виды и назначение прокладок двигателя

Форма и материал, из которого сделана прокладка, зависят от физических свойств той среды, с которой она будет соприкасаться. Часть прокладок служит для удержания в отведенных им местах технических жидкостей - моторного масла и охлаждающей жидкости. Другие служат для уплотнения мест прилегания деталей и противодействия внутреннему давлению в сочетании с высокой температурой - например, блока и головки блока цилиндров, образующих камеру сгорания.

Дополнительное преимущество прокладок в том, что их применение позволяет не добиваться идеальной обработки прилегающих поверхностей. Мягкая прокладка примет форму детали, сгладив шероховатости

Третьи, их принято называть сальниками, уплотняют места соприкосновения подвижных деталей с неподвижными. Конкретная форма прокладок зависит от конфигурации прилегающих плоскостей. У каждого производителя встречаются детали уникальные формы, поэтому прокладки не унифицированы между собой, и при замене необходимо приобретать прокладки, рекомендованные фирмой-изготовителем.

Прокладка головки блока цилиндров

Прокладка ГБЦ устанавливается в месте соединения блока цилиндров и его головки. В области размещения прокладки находятся каналы водного охлаждения двигателя и системы смазки, кроме того внутрь цилиндра поступает топливо-воздушная смесь, которая при сгорании вырабатывает большое количество энергии. Среда очень неблагоприятная, поскольку происходят постоянные скачки температуры и давления. Соответственно, чтобы выдерживать такие серьезные нагрузки, прокладки ГБЦ изготавливают из прочных, стойких к высоким температурам материалов.

Детали, которые мы называем сальниками, на самом деле ими не являются. Сальник - устаревшая конструкция из металлической обоймы и набивки (пропитанной маслом пеньковой веревки)

Материалы, из которых изготавливают прокладки ГБЦ, можно поделить на две группы: металлические и неметаллические.

Неметаллические прокладки

Неметаллические прокладки, в свою очередь, делятся на асбестовые и безасбестовые. Первые делаются из листового асбеста. Как правило, центральные отверстия для цилиндров таких прокладок укрепляют стальными кольцами, надетыми на кромку вырезов. Такими же кольцами снабжены отверстия для крепежа, проходящего сквозь прокладку. Существует разновидность прокладок из резиновой смеси, которую прессуют с добавлением асбестового волокна и порошка графита.

Существует безасбестовая разновидность материала; сформированные из него прокладки дороже в производстве, но отличаются повышенной износостойкостью. Его изготавливают из синтетического волокна и каучука, которые прессуют при высокой температуре.

Металлические прокладки

Металлические прокладки ГБЦ - наиболее распространенный тип. Чаще всего прокладки изготавливают из многослойной тонкой листовой стали или листовой меди. Места, соприкасающиеся с плоскостями деталей, нередко покрывают похожим на резину составом для обеспечения надежного уплотнения. Такие прокладки, в отличие от неметаллических, обладают большей износостойкостью и служат дольше. Прокладки из меди встречаются реже из-за высокой стоимости материала. Следует помнить о том, что прокладка ГБЦ - изделие одноразового использования, даже если вы не видите на ней признаков повреждений. При затяжке она принимает форму соприкасающихся с ней поверхностей, и поставить ее на сто процентов в то же положение невозможно. По этой причине, каждый раз, снимая ГБЦ, необходимо приобрести новую прокладку.

Основная причина преждевременного выхода из строя прокладки ГБЦ - перегрев двигателя. При замене прокладки необходимо правильно затянуть крепежные болты или шпильки с соблюдением момента затяжки. Делать это необходимо при помощи надежного и качественного динамометрического ключа и строго в порядке, описанном в руководстве по ремонту данного двигателя.

Прокладки клапанной крышки

Для изготовления прокладок клапанной крышки используется резина (в прошлом встречались прокладки из пробки). Прокладка крышки герметизирует место стыка крышки клапанов и соответствующего ей паза в верхней кромке ГБЦ. Служит для защиты от протечек моторного масла, смазывающего расположенный в головке блока механизм ГРМ.

Впускной и выпускной коллекторы уплотняют прокладками на месте стыка с блоком цилиндров. Уплотнить стык впускного коллектора проще, так как в нем необходимо соблюдать только постоянство давления. Температура в коллекторе не повышается, поэтому чаще всего для уплотнения используют прокладки из прессованного картона. Прокладка выпускного коллектора препятствует прорыву раскаленных отработавших газов в подкапотное пространство. Выпускной коллектор, находится в зоне повышенных температур, поэтому прокладка должна быть из материала, который выдерживает температурные перепады и высокое давление. Часто применяют металлические прокладки и прокладки из безасбестового паронита.

Прокладки в системе охлаждения

От корректной работы системы охлаждения зависит рабочая температура внутри блока цилиндров, и, как следствие, ресурс двигателя. Для охлаждения двигателя используют вентилятор, обеспечивающий циркуляцию воздуха, радиатор и охлаждающую жидкость, которая подается по каналам с помощью насоса. Для того чтобы на месте стыков в системе охлаждения не произошла разгерметизация, также используются прокладки.

Материалом для прокладок теплообменника служит синтетический каучук, который хорошо выдерживает воздействие жидкостей и масел. Диапазон температур, который выдерживает синтетический каучук: от -45 до +110 градусов. Такими прокладками оснащают крышку водяного насоса,  крышку термостата и другие прилегающие детали.

Другие типы прокладок в конструкции двигателя

Благодаря большому количеству подвижных частей, прежде всего, приводных валов, в двигателе применяется большое количество различных прокладок, препятствующих просачиванию моторного масла наружу. Особо в этой категории следует выделить сальники - прокладки особого типа, применяющиеся для герметизации торцевых посадочных мест валов (коленчатого, распредвала и так далее). Детали, которые мы называем сальниками, на самом деле на техническом языке принято называть манжетами - это круглая прокладка П-образного профиля, усиленная кольцевой пружиной. Основной параметр сальника - внешний и внутренний диаметр. Внешний диаметр соответствует посадочному месту в блоке, внутренний - диаметру торцевой части вала. Делают сальники из прочного искусственного каучука, а профилированная форма (в разрезе) придает изделию жесткость.

В комплекте с прокладкой клапанной крышки для многих двигателей идет дополнительная прокладка, состоящая из нескольких колец, защищающих от масла свечные колодцы

Для герметизации различных стыков в узлах двигателя применяются десятки каучуковых и паронитовых прокладок различной формы. Их количество так велико, что зачастую прокладки продаются наборами и ремкомплектами, например, "ремкомплект карбюратора" и тп. Искусственный каучук, из которого они делаются, устойчив не только к воздействию моторного масла, но и бензина. Прокладки не унифицированы по размеру и форме даже в рамках линейки двигателей отдельного производителя, поэтому приобретать их можно, только если известен точный номер детали, полученный при помощи оригинального каталога и VIN автомобиля.

blamper.ru

Материал для прокладок фтористая резина Viton, FKM, FPM

Материал для прокладок фтористая резина Viton, FKM, FPM

Viton® - это зарегистрированная торговая марка фторкаучука, принадлежащая компании DuPont, на сегодняшний день из всех существующих фторкаучуков Viton считается лучшим. На основе фторкаучука изготавливают резиновую смесь, из которой, затем делают уплотнение. В соответствии с различными системами стандартизации словосочетание "фторкаучук" обозначается различными аббревиатурами, но смысл от этого и сам материал не изменяются.

Аббревиатура FPM - в соответствии с указаниями международной организации стандартизации (ISO), аббревиатура FKM - в соответствии с обозначением, принятым Американским обществом тестирования и материалов (ASTM). Т.е. FPM - международное название, а FKM - американское название одного и того же материала. В России принято сокращение - ФК (СКФ-26, СКФ-32).

Фторкаучук Viton® начали выпускать в 1957 году. Начало производства данного материала позволило решить множество проблем в основных отраслях промышленности таких, как:

 

  • Аэрокосмическая промышленность
  • Автомобилестроение
  • Химическая промышленность и транспорт
  • Пищевая и фармацевтическая промышленность
  • Оборудование для работы в неосвоенной местности и в тяжелых условиях эксплуатации
  • Разведка и добыча на нефтегазовых месторождениях
  • Переработка и транспортировка нефти

 

Основные применения фторэластомеров — сальники, манжеты, герметики, покрытия, виброгасители, компенсаторы, прокладки, мембраны, заглушки, диафрагмы, термостойкие уплотнительные кольца, уплотнения штоков, термостойкие шнуры и пластины.

На данный момент, самые распространенные типы каучуков - это каучуки общего назначения: Viton® A, Viton® B, Viton® F.

Различаются фтористые резины на основе этих каучуков - стойкостью в кислородосодержащих автомобильных топливах, моторных маслах, жидкостях на водной основе.

Так же, существуют фторкаучуки специального назначения - Viton® GLT, Viton® GFLT, Viton® Extreme, Viton® Base Resistant.

Типы фторкаучуков:

Viton® A B F GLT GFLT Extreme BaseResistant
% фтора 66 68 70 64 66 66 -
Химическая стойкость ++ +++ ++++ + ++++ ++++ ++++
Стойкостьк высокой температуре +++ +++ +++ +++ +++ +++ +++
Стойкостьк низкой температуре + 0 - ++++ ++ + +

Примечание: чем больше знаков +, тем лучше свойства каучука.

FPM / FKM / Viton® (Фторкаучук) - хорошо работает в условиях воздействия разнообразных агрессивных жидкостей. Системы, в которых используются изделия из Viton®, обладают более высокой стойкостью к воздействию широкого диапазона химических веществ. Обладает отличными механическими и физическими свойствами, содержание в резиновой смеси фтора обеспечивает негорючесть данного материала. Фтористые эластомеры имеют небольшое газопропускание и минимальную потерю веса при работе в вакууме.

Устойчив к:

  • горючему
  • старению
  • агрессивным химическим соединениям
  • минеральным маслам и жирам
  • силиконовым маслам и жирам
  • маслам с серой и высоко ароматическим маслам
  • биологически разлогающимся гидравлическим жидкостям
  • озону
  • алифатическим углеводородам (пропан, бутан, бензины)
  • ароматическим углеводородам (бензин, толуол)
  • хлорированым углеводородам
  • ультрафиолетовому излучению

 

Не устойчив к:

  • эфирам
  • торммозным жидкостям на гликолевой основе
  • органическим кислотам, например октовой и муравьиной
  • флюсовой кислоте
  • хлорносульфоновая кислота
  • кетонам (ацетон, ацетофенон)
  • раскаленному водяному пару
  • аммиаку
  • аминам
  • полярным растворителям (ацетон, метилэтилкетон, диоксан)

 

Диапазон рабочих температур фторкаучуковых колец: от -20°С до +200°С, выдерживает кратковременный нагрев до +230°С. В некоторых случаях, правильно спроектированные детали из фтористой резины на основе специального морозостойкого каучука Viton могут обеспечить герметичность неподвижных соединений даже при температуре ниже -60°С.

Следует учитывать, что при повышении температуры уплотнений из фторэластомеров более +300°С из них начинают выделяться токсичные газы и пары, и даже после охлаждения данные материалы небезопасны.

Cведения о работоспособности резин на основе фторкаучука Viton при повышенных температурах:

  • 10000 часов при Т=204 °С.
  • 3000 часов при Т=232 °С.
  • 1000 часов при Т=260 °С.
  • 240 часов при Т=288 °С.
  • 48 часов при Т=316 °С.

Viton® сохраняет хорошие уплотняющие свойства после пребывания на воздухе в течении более 10000 часов при температуре до 204°С.

mztsrus.ru


Смотрите также