Способ получения автомобильного бензина. Получение бензинов


Способ получения бензина

 

Использование: нефтехимия. Сущность: утяжеленную бензиловую фракцию термических процессов, имеющую температуру конца кипения 260°С, вводят в верхнюю часть реакционной зоны при объемной скорости подачи сырья 0,75-1,5 ч-1 и проводят контактирование с движущимся слоем катализатора при его температуре 450-470°С. Катализат разделяют. Полученную фракцию 195°С - КК подают в среднюю часть реакционной зоны в слой катализатора. 3 табл.

Изобретение относится к способам получения бензина и может быть использовано в нефтеперерабатывающей промышленности.

Известен способ получения бензина путем каталитической очистки моторных бензинов с концом кипения 230-240оС в движущемся слое цеолитсодержащего катализатора. В результате получается бензин с октановым числом в чистом виде моторным методом 81-83 п. и повышенной устойчивостью к окислению [1]. Недостатком способа является резкое ухудшение показателей процесса при переходе к использованию бензинов термического крекинга.

Известен способ получения бензина путем переработки продуктов термической деструкции нефтяного сырья в реакторе с движущимся слоем шарикового цеолитсодержащего катализатора [2], принятой за прототип. В качестве исходного сырья используют смесь бензиновых фракций процессов термического крекинга и коксования в соотношении 0,5:1-4:1. Из этой смеси выделяют головную фракцию с температурой конца кипения не выше 85оС. Полученную при этом остаточную фракцию смешивают с керосиновой фракцией процессов термического крекинга и коксования в соотношении 1:0,1-1:1 и подают в верхнюю часть реакционной зоны под слой катализатора. Головную фракцию подают в нижнюю часть реакционной зоны в слой катализатора с проведением контактирования в верхней части слоя при температуре 450-475оС, в нижней части реакционной зоны при температуре 430-440оС и последующим разделением продуктов контактирования на целевые продукты. В результате получают бензин с октановым числом 72,2 моторным методом, с содержанием ароматических углеводородов 26,1 мас.% и выходом 74,2%.

Недостатком способа является необходимость вовлечения в сырье ценной керосиновой фракции 195-305оС, которая могла бы рационально использоваться для получения дизельного и реактивного топлив. Кроме того, бензин обладает незначительным содержанием ароматических углеводородов, что не позволяет вовлекать его в процесс каталитического риформинга и выделять ароматику; конец кипения бензина термического крекинга не превышает 205оС, что значительно снижает ресурсы сырья.

Целью изобретения является разработка такого способа получения бензина, который позволил бы расширить ресурсы сырья, повысить октановое число бензина и содержание в нем ароматических углеводородов.

Поставленная цель достигается путем использования в качестве сырья утяжеленной бензиновой фракции с концом кипения 260оС, которую вводят в верхнюю часть реакционной зоны с объемной скоростью 0,75-1,5 ч-1 при температуре слоя катализатора 450-470оС, затем от полученного катализата отделяют фракцию выше 195оС и подают с объемной скоростью 0,15-0,3 ч-1 в среднюю часть реакционной зоны в слой катализатора.

Сущность предлагаемого способа состоит в следующем. Сырье - сернистый бензин термического крекинга с концом кипения 260оС предварительно подогревают до 450-470оС, с объемной скоростью 0,75-1,5 ч-1 подают в реактор каталитического крекинга, где оно контактирует с движущимся слоем катализатора, на котором происходит реакция изомеризации и ароматизации н-парафинов и непредельных углеводородов. Полученный катализат из реактора направляют в ректификационную колонну, где происходит разделение катализата на целевую бензиновую фракцию НК-195оС и фракцию 195-КК. Фракцию 195КК возвращают в реактор в среднюю часть реакционной зоны в слой катализатора с объемной скоростью 0,15-0,3 ч-1. Повышение октанового числа бензина и содержания ароматических углеводородов в нем достигается путем проведения процесса в оптимальном температурном режиме (450-470оС) за счет возврата фракции 195-КК в реактор со скоростью 0,15-0,3 ч-1 при использовании в качестве сырья утяжеленной бензиновой фракции.

Предлагаемый способ был проверен в пилотных условиях ГрозНИИ и подтверждается следующими примерами.

П р и м е р 1. Сырье, представляющее собой смесь бензинов термического крекинга с установок термического крекинга Ново-Уфимского и Грозненского НПЗ в соотношении 1:1, подают в реактор каталитического крекинга, где при температуре tр - 450оС, с объемной скоростью подачи сырья (с) 1 ч-1 и кратности циркуляции катализатора (КЦК) 2,4:1 происходит контакт с движущимся слоем цеолитсодержащего шарикового катализатора. Пары и продукты реакции на блоке разделения делятся на газ и катализат, из которого выделяют целевую фракцию бензина НК-195оС и фракцию 195о-КК. Фракцию 195оС-КК возвращают в среднюю часть реакционной зоны в слой катализатора с объемной скоростью (р) 0,2 ч-1. В реакторе рисайкл подвергается превращению с получением дополнительного бензина. Состав сырья, условия проведения опытов и качество полученных продуктов представлены в табл.1,2,3.

П р и м е р 2. Сернистый бензин термического крекинга НУНПЗ подвергают превращению по примеру 1 при температурах tр 450, 470оС; с - 1; 1,5 ч-1. КЦК - 2;1, 2,8:1, а фракцию 195оС - КК возвращают в реактор с р - 0,2; 0,3 ч-1. Состав сырья, условия проведения опытов и качество полученных продуктов представлены в табл.1,2,3.

П р и м е р 3. Сырье по примеру 2 подвергают превращению при температурах tр - 460, 470оС, с - 0,75, КЦК 2:1, р - 0,15. Состав сырья, условия проведения опытов и качество полученных продуктов представлены в табл. 1,2,3.

П р и м е р 4. Сырье по примеру 2, но облегченное, с концом кипения 205оС - подвергают превращению при с - 0,8 ч-1, КЦК - 2:1, р - 0,16 ч-1. Состав сырья, условия проведения опытов и качество полученных продуктов представлены в табл.1,2,3.

П р и м е р 5. Грозненский бензин термического крекинга подвергают превращению по примеру 2. При температуре 450оС, с - 1 ч-1, р - 0,2 ч-1.

Состав сырья, условия проведения опытов и качество полученных продуктов представлены в табл.1,2,3 соответственно.

Из табл.1-3 видно следующее.

При использовании в качестве сырья бензинов термических процессов с концом кипения 260оС по предлагаемому способу могут быть получены бензины с октановым числом 73,4-75 п. (ММ) с содержанием ароматических углеводородов 33,6-47,9 мас. %. Такие бензины могут быть использованы как компоненты автобензина А-76, тем более, что при предлагаемом способе снижается также содержание серы.

Прирост октанового числа бензинов, полученных по предлагаемому способу, выше, чем по прототипу и составляет 9-12 пунктов против 8,5.

СПОСОБ ПОЛУЧЕНИЯ БЕНЗИНА путем контактирования низкосортных бензиновых фракций термических процессов с движущимся слоем катализатора в реакционной зоне с образованием катализата, последующего разделения его на бензин и побочные продукты, отличающийся тем, что в качестве сырья используют утяжеленную бензиновую фракцию термических процессов, имеющую температуру конца кипения 260oС, которую вводят в верхнюю часть реакционной зоны при объемной скорости подачи сырья 0,75 - 1,5 ч-1, контактирование проводят при температуре слоя катализатора 450-470oС, при разделении катализата получают фракцию 195o С-КК, которую при объемной скорости подачи сырья 0,15-0,3 ч-1 подают в среднюю часть реакционной зоны в слой катализатора.

Рисунок 1, Рисунок 2, Рисунок 3

www.findpatent.ru

Как получают бензин? Присадки и добавки бензина.

Автомобильные бензины получают путем переработки нефти, газового конденсата, природного газа, угля, торфа и горючих сланцев, а также синтезом из окиси углерода и водорода.

Основным сырьем для производства автомобильных бензинов является нефть: около 25% нефти, добываемой в мире, перерабатывают в бензин.

В России все товарные бензины получают из нефти и газоконденсатов. На газоперерабатывающих заводах путем выделения из газов жидких углеводородов получают газовый бензин. Газовые бензины обладают хорошими пусковыми свойствами и при добавлении в небольших количествах в товарные бензины способны улучшать их эксплуатационные свойства.

Современные автобензины готовят смешением компонентов, получаемых путем прямой перегонки, каталитического риформинга и каталитического крекинга, изомеризации, алкилирования, полимеризации и других процессов переработки нефти и газа.

Качество компонентов, используемых для приготовления тех или иных марок товарных автомобильных бензинов, существенно различается и зависит от технологических возможностей предприятия. Товарные бензины одной и той же марки, но выработанные на различных нефтеперерабатывающих заводах (НПЗ), имеют неодинаковый компонентный и фракционный составы, что связано с различием технологических процессов и перерабатываемого на них сырья на каждом конкретном нефтеперерабатывающем предприятии. Даже бензины одной марки, выработанные конкретным заводом в разное время, могут отличаться по компонентному составу в связи с проведением регламентных работ на отдельных технологических установках, изменением состава сырья и программы завода по выпуску продукции.

Однако во всех случаях должна соблюдаться технология получения товарных бензинов на данном предприятии, что является обязательным требованием стандартов и технических условий на автомобильные бензины.

Основными технологическими процессами производства автомобильных бензинов является каталитический риформинг и каталитический крекинг. Несмотря на ограничения по содержанию ароматических углеводородов, процесс каталитического риформинга по-прежнему остается определяющим процессом производства бензинов, так как он является основным источником высокооктановых компонентов, а также водорода для установок гидроочистки.

Вследствие ужесточения норм на содержание серы в моторных топливах необходимо увеличение мощностей гидрообессеривания, что требует дополнительного водорода.

Снижение доли и роли бензина риформинга в производстве экологически чистых реформулированных бензинов обусловлено не только ограничением содержания ароматических углеводородов, но и неудовлетворительным распределением октановых характеристик по фракциям катализата, в особенности до 100 °С.

В связи с этим процесс бензинового риформинга целесообразно и необходимо сочетать с процессами удаления бензола и изомеризации бензина С5 — 1 00 °С.

В последние годы технология и коммерческая активность по созданию на НПЗ мира новых установок каталитического крекинга в псевдоожиженном слое микросферического катализатора приобрела рекордно высокий уровень за все время применения этого процесса.

Таким образом, если уже в настоящее время объем вырабатываемого в мире бензина каталитического крекинга практически сравнялся с суммарным объемом выработки бензинов риформинга и изомеризации, то в ближайшем будущем бензин каталитического крекинга плюс компоненты сопряженных с ним процессов (алки-лирование, получение оксигенатов, полимербензинов и др.) будут лидировать в производстве автобензинов на НПЗ в сравнении с процессами риформинга, требующими дополнительных ресурсов прямогонных бензинов и, соответственно, нефти.

В последние 10—15 лет процесс каталитического крекинга был значительно усовершенствован, главным образом с целью увеличения селективности при конверсии исходного вторичного сырья в бензин (каталитические реакции основные, термические — минимальны).

На отечественных НПЗ эксплуатируются установки каталитического крекинга с лифт-реактором с предварительной гидроочистки исходного сырья — вакуумного газойля мощностью 2 млн т/год по сырью. Эти установки обеспечивают выход бензина более 50% на сырье, который имеет октановое число по моторному методу 80—82 ед. и по исследовательскому методу 90—93 ед.

Улучшение октановых характеристик достигают выбором катализатора и ужесточением режима работы установок. Это сопровождается так же приростом выхода низкокипящих олефинов С3 — С4, что благоприятно для увеличения ресурсов сырья алки- лирования и получения высокооктановых оксигена- тов: метил-третбутилового эфира (МТБЭ), метилтретамилового эфира (МТАЭ), ди-изопропило- вого эфира (ДИПЭ) и др. Однако, когда при жестких режимах крекируют тяжелое сырье, это приводит к образованию диеновых углеводородов во фракциях С4 — С5. Диены отрицательно влияют на процесс алкилирования: увеличивается расход кислоты, снижается выход и качество алкилата. Меры по ужесточению режима крекирования, подбору сырья и катализатора позволяют улучшить (на 2—4 ед.) октановую характеристику по исследовательскому методу. Однако при этом, в связи с ростом содержания олефинов в бензине, увеличивается его чувствительность, то есть разность между октановыми числами по исследовательскому и моторному методам.

Широкое применение находят системы комплекса каталитического крекинга предварительно гидроочи- щен-ного вакуумного газойля в блоке с производством МТБЭ и алкилированием. Это решает проблему углубления переработки сырья по бензиновому варианту, частично — проблему снижения содержания сернистых соединений в бензине, увеличения производства высокооктановых компонентов бензина и собственного производства кислородсодержащей высокооктановой добавки. Однако состав непосредственно бензина каталитического крекинга С5 — 1 80 °С остается неудовлетворительным по содержанию олефиновых углеводородов, содержанию остаточной серы, разнице между ИОЧ и МОЧ, также по химической стабильности компонента.

Поэтому целесообразно использовать в этих комплексах каталитического крекинга следующие технологические решения: изоамилены, третичные гексены и гептены бензина каталитического крекинга превращать в высокооктановые эфиры метанола, что повышает октановое число топлива.

Если этерифицировать низкокипящий бензин каталитического крекинга, а не только фракцию С5, выработка эфиров возрастает на 40—50%.

На установках каталитического крекинга разделением бензина в процессе каталитической дистилляции можно получить бензин фракции С5 — 100 °С, пригодный для этерификации. Сырье этерификации нуждается в очистке от диенов и сернистых соединений. Содержание диолефинов снижают до 0,1 — 0,05% путем селективного гидрирования в реакторе-колонне.

В результате этерификации фракции С5 — 100 °С каталитического крекинга ее октановый индекс повышается на 2—3 ед. и значительно, на 25%, уменьшается содержание в ней олефинов.

Поскольку МТАЭ и сумму МТГЭ (метил-трет- гекси-ловый и метил-трет-гептиловый эфир) получают для нужд данного завода, их выделение в чистом виде не требуется. Технологически целесообразно оставить эфиры в бензине каталитического крекинга, как компоненты товарного бензина.

Важное значение для увеличения ресурсов реформулированных товарных бензинов приобретает пропилен каталитического крекинга. Вырабатываемый в увеличенном объеме при жестких режимах на новых катализаторах пропилен каталитического крекинга на заводах, не производящих полипропилен, наиболее целесообразно использовать для организации производства диизо-пропилового эфира (ДИПЭ).

ДИПЭ обладает свойствами конкурентными с МТБЭ, МТАЭ: содержит 15,7% кислорода (МТБЭ — 1 8,2%, МТАЭ — 1 5,7%), обладает высоким октановым числом 98 ед. по моторному методу и 112 ед. по исследовательскому, октановый индекс — 105 ед. (МТБЭ — 108 ед., МТАЭ — 104 ед.), имеет теплоту сгорания 9400 ккал/кг, температуру кипения 68 °С, давление насыщенных паров по Рейду — 30 кПа (МТБЭ — 60 кПа). Склонность ДИПЭ к образованию гидроперекисей является его недостатком.

В целом, технический прогресс в технологии каталитического крекинга позволяет существенно увеличить выход легких олефинов C3 — С7 и вырабатывать меньше высококипящих фракций бензина, обогащенных ароматическими углеводородами. При эффективном использовании этих возможностей суммарный эффект облагораживания бензинов каталитического крекинга (включая ДИПЭ + МТБЭ + ал- килат + этерификат С5 — С7) — значительно возрастает.

В настоящее время алкилат становится важнейшим компонентом реформулированных экологически чистых бензинов.

Алкилат — идеальный компонент бензина, поскольку имеет высокие октановые числа по исследовательскому и моторному методам, низкое давление насыщенных паров, не содержит ароматических соединений олефинов и серы.

Алкилирование — это не только процесс повышения октановых характеристик бензина при снижении в нем ароматических углеводородов, но и процесс снижения его испаряемости.

Высокое давление насыщенных паров фракций С4 — С5 .исключает возможность увеличения их использования в товарном бензине, поэтому процесс аликилирования, позволяющий снижать давление насыщенных паров и одновременно увеличивать значение октанового числа продукта по моторному методу, имеет исключительно важное значение для производства современных автобензинов.

Получение товарного бензина с высоким моторным октановым числом путем замены бензола и других ароматических углеводородов в бензине на алкилат и эфиры (МТБЭ, МТАЭ) позволяет в более мягких условиях осуществлять процесс каталитического риформинга. При снижении жесткости процесса каталитического риформинга увеличивается срок службы катализатора и период работы установки между его регенерациями, повышается выход катализата с пониженным содержанием ароматических углеводородов, улучшается качество получаемого водорода для установок гидроочистки.

Лучшим сырьем (особенно сернокислотного алкилирования) являются бутилены нормального ряда, не содержащие в своем составе изобутилена. В связи с этим фракцию С4 каталитического крекинга для избирательного извлечения изобутилена предварительно этерифи-цируют метанолом, а рафинат направляют на алкилирование, обеспечивая двойной эффект: получение МТБЭ и алкилата в едином технологическом потоке.

Наряду с использованием диалкиловых эфиров С5 и выше в состав товарных автобензинов допускается в Европе вовлекать до 3% метанола, до 5% этанола (в США до 10%), до 7% третбутилового спирта и до 10% изопропилового или изобутилового спирта. При этом массовая доля кислорода не должна превышать 2,7%.

При введении в бензины метанола обязательно добавление стабилизирующих агентов. В случае введения этанола стабилизирующие агенты могут также добавляться. В бензин следует вводить антикоррозионные присадки, если может возникнуть опасность выделения воды.

На смену широко применяемому МТБЭ, мировое потребление которого в 2001 году превысило 25,7 млн тонн, приходит денатурированный этанол, так как его получают из возобновляемого сырья (биомасса, древесина и т. д.), и он не оказывает вредного влияния на источники водоснабжения, что является причиной запрещения применения МТБЭ в США (штат Калифорния).

В то же время, по оценке сторонников МТБЭ, эффект от его вклада в решение экологической проблемы значительно превосходит риск, связанный с его применением.

Вовлечение в состав автобензинов этанола до 10% позволяет уменьшить на то же количество содержание ароматических углеводородов без снижения детонационной стойкости товарного бензина.

Недостатками спиртовых добавок являются низкая гидролитическая устойчивость, низкие противоиз- нос-Л ные и антикоррозионные свойства. Спирты проникают в материал шдангов и уплотнений топливной системы автомобиля и АЗС, что выводит их из строя, нарушая герметичность. При использовании спиртов в 2—3 раза возрастает содержание альдегидов в составе отработавших газов.

Однако, как показывает зарубежный опыт, использование спиртовых компонентов в автобензинах является перспективным не только в плане сохранения нефтяных ресурсов, но и улучшения экологических свойств моторных топлив. Количество вводимых спиртов позволяет снизить на ту же величину концентрацию нежелательных ароматических углеводородов и содержание оксида углерода в отработавших газах автомобилей.

Ароматические углеводороды (толуол, ксилолы) обладают высокой детонационной стойко стью и применяются как высокооктановые компоненты бензинов, а азотсодержащие производные ароматических углеводородов можно использовать как октаноповы- шающие добавки.

Антидетонационные свойства N-метиланилина были обнаружены практически одновременно с открытием антидетонационных свойств тетраэтилсвинца.

В качестве добавки к авиационным бензинам N-метиланилин применялся в Германии и СССР, а в автомобильных бензинах более 1 0 лет используется в России в концентрации до 1,3 % масс. В настоящее время разработан ряд композиционных октаноповы- шающих добавок, содержащих N-метиланилин: АДА, АвтоВэм, БВД, Феррада и др.

Добавка АДА — это практически N-метиланилин.

Добавка АвтоВэм — смесь N-метиланилина с марга-нецсодержащим компонентом.

Добавка БВД — смесь N-метиланилин с МТБЭ.

При использовании сочетания N-метиланилина с соединениями марганца отмечается синергетический эффект, то есть прирост октанового числа бензина при совместном использовании этих антидетонаторов больше, чем суммарный прирост в случае раздельного их применения в тех же концентрациях.

Наряду с антидетонаторами на основе марганца в составе неэтилированных бензинов могут быть использованы железосодержащие антидетонаторы: карбинол-ферроцены, диалкилферроцены и ферроцены. На основании положительных испытаний автобензинов, содержащих ферроценовые соединения до 37 мг железа на 1 дм3 бензина, Государственная Межведомственная комиссия по испытанию топлив, масел, смазок и специальных жидкостей при Госстандарте РФ допустила их к производству и применению.

С целью улучшения эксплуатационных и экологических свойств автомобильных бензинов в их состав вводят моющие и многофункциональные присадки.

Необходимость применения моющих присадок для обеспечения чистоты карбюраторов и впускной системы двигателей впервые возникла в США. Причиной этому послужило ужесточение норм на выбросы вредных веществ с отработавшими газами. Как показала практика, многие автомашины, успешно прошедшие контроль по содержанию окиси углерода в отработавших газах на холостом ходу, после некоторого пробега не удовлетворяли нормам.

Было установлено, что причиной этого является образование осадков и отложений в системе всасывания и в результате окисления под влиянием воздуха и

полимеризации на подогретой поверхности нестабильных угле-водородов-олефинов, а также реакционно-способных соединений картерных газов, которые направляют в систему всасывания для уменьшения эмиссии углеводородов.

Эффективным способом борьбы с отложениями в карбюраторе и впускной системе является добавление к бензинам специальных моющих присадок. Впервые бензины с моющими присадками были разработаны фирмой «Шеврон» в 1954 г., но широкое распространение они получили с введением принудительной системы вентиляции картера. Требование по обязательному применению моющих присадок возникло после установки на двигателях инжекторных топливных систем нейтрализаторов ОГ, а также частичной рециркуляции ОГ, то есть возврата их во впускную систему двигателя.

Предотвращение загрязнения карбюратора с помощью моющих присадок позволяет сохранить заводские регулировки карбюратора и тем самым снизить расход бензина, уменьшить токсичность ОГ в процессе эксплуатации двигателя и сократить число ремонтов, связанных с регулировкой карбюратора.

При работе двигателей с принудительной системой вентиляции картера на бензинах без моющих присадок, нарушение работы карбюратора наблюдается через 12-15 тыс. км пробега, а при использовании бензина с моющими присадками длина пробега автомобиля возрастает до 32 тыс. км, то есть больше чем в 2 раза.

Необходимо отметить, что моющие присадки первого поколения, эффективно удаляя отложения из карбюратора, имеют существенный недостаток: они могут способствовать образованию отложений на впускных клапанах. Этим недостатком не обладают моюще-диспергирующие присадки для авиабензинов или присадки второго поколения.

Самыми совершенными являются присадки третьего и четвертого поколения или присадки, предотвращающие образование отложений в карбюраторе, на впускных клапанах, на форсунках и других критических деталях и узлах двигателя. Кроме того, присадки четвертого поколения уменьшают образование нагара в камере сгорания двигателя и тем самым — требования к антидетонационным свойствам бензина в процессе эксплуатации автомобиля.

Изменения, внесенные в конструкцию двигателя с целью снижения содержания вредных компонентов в отработавших газах, усиливают тенденцию образования отложений на впускном клапане.

Поэтому значение этих присадок в последние годы заметно возросло. В США и ряде стран Европы применение моющих присадок становится обязательным.

Разработкой и производством моющих присадок занимаются такие фирмы, как «Shell», «BASF», «Лубри-зол», «Этил» и др.

В нашей стране разработаны и вырабатываются моющие присадки к автобензинам второго поколения «Афен» и «Автомаг». Проводятся работы по синтезу и отработке технологии получения моющих присадок третьего и четвертого поколения.

 

При наличии в товарных бензинах нестабильных компонентов для обеспечения требуемого качества в процессе длительного хранения (3—5 лет) в них вводят антиокислители и деактиваторы металлов. В качестве антиокислителей используют 2,6-ди-трет-бутил-4ме-тилфенол или парооксидифе- ниламин. Антиокислительные присадки вводят в нестабильные компоненты бензина непосредственно на технологических установках в концентрации до 0,10% массы для обеспечения требуемого индукционного периода

Деактиваторы металлов —это присадки, подавляющие каталитическое действие металлов на окисление топлива. Они усиливают стабилизирующее действие антиокислителя, что позволяет на 30—70% снизить его концентрацию в топливе. При этом концентрация деак-тиватора металлов в бензине составляет 0,005—0,01 % масс. Наиболее эффективны соединения, способные образовывать внутрикомплексные соли, главным образом хелатного (клешневидного) строения. К ним относятся салицилидены, например, дисалицилиденпропилендиамин (N^N-дисалицилаль-1,2-пропилендиамин).

В таких соединениях атом металла надежно экранирован и не способен вступать в реакции, катализирующие окисление.

В некоторых случаях возникает необходимость каким-либо образом маркировать то или иное топливо. Например, в этилированный бензин добавляют красители с целью обратить внимание на наличие в нем токсичного тетраэтилсвинца. Окрашивают дизельное топливо с минимальным (50—10 ррт) содержанием серы. Маркировка топлив может осуществляться не только при помощи красителей, для этой цели можно использовать одорирующие присадки и бесцветные специальные вещества. Маркирующие присадки вводят в бензин в столь малой концентрации, что они практически не влияют на физико-химические и эксплуатационные характеристики.

Присадки вводят в бензин различными способами при его производстве на НПЗ, терминалах, в автохозяйствах и непосредственно в топливный бак автомобиля.

Во всех случаях требуется обеспечить эффективное смешение присадки с бензином при наименьших энергетических и трудовых затратах.

Вне всякого сомнения, продолжающиеся совершенствования конструкции двигателей автомобилей будут приводить к постоянному изменению роли присадок к бензинам. Поскольку эффективность присадок зависит от топлива и конструкции двигателя, производители и поставщики присадок к бензинам должны работать вместе с конструкторами двигателей и автотранспортными компаниями для достижения оптимальной эксплуатации автомобилей по расходу топлива, обеспечивая экологические требования.

www.vseznaniya.ru

Способ получения автомобильного бензина

Изобретение относится к нефтеперерабатывающей промышленности. Изобретение касается способа получения автомобильного бензина на основе бензиновой фракции каталитического крекинга, включающего каталитический крекинг сырья, в качестве которого используют смесь прямогонного вакуумного газойля и бензиновой фракции висбрекинга в соотношении от 98:2 мас.% до 75:25 мас.%, с последующим разделением катализата ректификацией на легкую и тяжелую бензиновую фракцию каталитического крекинга, легкий и тяжелый каталитический газойль, последующую демеркаптанизацию легкой бензиновой фракции каталитического крекинга и гидроочистку тяжелой бензиновой фракции каталитического крекинга в присутствии катализатора гидроочистки, осуществляемую путем предварительного пропускания тяжелой бензиновой фракции каталитического крекинга через слой катализатора-сорбента на основе оксида алюминия, содержащего 1,0-1,5 мас.% оксида никеля и 3,0-4,0 мас.% триоксида молибдена, а затем через слой катализатора гидроочистки при соотношении высоты слоя катализатора-сорбента к высоте слоя катализатора гидроочистки, равном 1:10-25, с последующим смешением очищенной демеркаптанизацией легкой бензиновой фракции каталитического крекинга и гидроочищенной тяжелой бензиновой фракции каталитического крекинга в соотношении от 10:90 мас.% до 30:70 мас.% с получением базовых компонентов товарных автомобильных бензинов. Технический результат - получение базовых компонентов товарного автомобильного бензина без заметного уменьшения выхода целевого продукта, с высоким октановым числом (порядка 90 ИМ) и минимальным содержанием серы, пригодных для использования в производстве автобензинов марок Евро-3, Евро-4, Евро-5. 3 з.п. ф-лы.

 

Изобретение относится к нефтеперерабатывающей промышленности, конкретно к способу получения автобензина с улучшенными экологическими характеристиками из сырья, содержащего повышенные концентрации серы и непредельных углеводородов.

Известен способ гидроочистки бензина каталитического крекинга, включающий разделение исходной широкой фракции бензина каталитического крекинга на легкую Н.К. - 130-160°С и тяжелую фракцию 130-160°С - К.К. с последующей гидроочисткой тяжелой фракции в присутствии катализатора и смешением легкой фракции с гидроочищенной тяжелой фракцией. Процесс гидроочистки тяжелой фракции проводят при температуре 200-320°С, давлении 1,0-3,5 МПа, объемной скорости подачи сырья 1-10ч-1 в присутствии катализатора, содержащего 8-19% МоО3 и 2-6% СоО и/или NiO, остальное Al2O3.

Получают компонент товарного автобензина с содержанием серы менее 0,05 мас.% при потере октанового числа менее 0,5 пункта (пат. РФ №2242501, 2004).

Недостатком способа является относительно низкая степень очистки сырья от серы, что не позволяет получать автомобильные бензины, соответствующие нормам Евро-3, Евро-4 и Евро-5 (где требуется достижение остаточной серы соответственно менее 150 ррм, 50 ррм и 10 ррм). Другим недостатком способа является использование легкой фракции бензина каталитического крекинга (Н.К. - 130-160°С) без ее облагораживания, что может привести к ухудшению показателей качества автомобильного бензина не только по содержанию серы, но и по содержанию бензола, ароматических и олефиновых углеводородов.

Также известен способ облагораживания бензина каталитического крекинга гидроочисткой, после чего гидроочищенный продукт разделяют на легкую [Н.К. - 110(150)°С] и тяжелую [110(150)°С - К.К.] фракции; тяжелую фракцию [110(150)°С - К.К.] распределяют на два потока, один из которых возвращают на стадию гидроочистки, смешивая с исходным сырьем, а второй компаундируют с легкой гидроочищенной бензиновой фракцией [Н.К. - 110(150)°С] и выводят из системы установки в качестве компонента автобензина (содержание серы 0,04-0,1 мас.%).

Способ позволяет получить бензин каталитического крекинга с содержанием общей серы менее 0,10 мас.%, в том числе отсутствием меркаптановой серы, при минимальном снижении октанового числа очищенного бензина по сравнению с исходным бензином каталитического крекинга (пат. РФ №2258732, 2005).

К недостаткам данного способа также следует отнести низкую степень очистки бензинового дистиллата от серы (до уровня 0,04-0,10 мас.%), что не позволяет получать автомобильные бензины, соответствующие нормам Евро-3, Евро-4 и Евро-5. Другим недостатком способа является относительно сложная технология, предусматривающая распределение тяжелой фракции гидроочищенного бензина на два потока с частичным возвращением одного из потоков на смешение с исходным сырьем.

Также известен способ получения компонента бензина путем каталитического крекинга смеси бензинов термического происхождения и вакуумного газойля в присутствии углеводородного газа разбавителя. При этом основное сырье - вакуумный газойль, выкипающий в пределах 330-518°С, предварительно смешивают с 5-20% термобензина и подают на контакт с горячим регенерированным катализатором. Контактирование проводят в токе углеводородного газа-разбавителя при молярном соотношении газ-разбавитель:сырье, равном 0,5-3,5:1. Способ позволяет получить 41,9-46,6 мас.% бензина, характеризующегося октановым числом 89,7-91,1 по исследовательскому методу (ИМ) (пат. РФ №2086604, 1997).

К недостатку способа следует отнести относительно низкий выход компонента высокооктанового бензина (41,9-46,6 мас.% на сырье), в то время как современные технологии обеспечивают выход указанного компонента 48-52 мас.%, а также сложную технологию, предусматривающую подачу в жидкое сырье углеводородного газа-разбавителя.

Недостатком способа является также отсутствие последующего облагораживания полученного бензина каталитического крекинга, что не позволяет достигнуть показателей качества этого продукта, соответствующего современным требованиям (стандарт Евро-3, Евро-4 и Евро-5).

Наиболее близким к заявляемому является способ получения автомобильного бензина на основе бензиновой фракции каталитического крекинга. Как правило, в таком процессе в качестве сырья каталитического крекинга используют прямогонные вакуумные газойли (без гидроочистки исходного вакуумного дистиллата). Способ включает разделение выделенной бензиновой фракции каталитического крекинга ректификацией на легкую (Н.К. - 70°С) и тяжелую (70-215°С) фракции. Легкая фракция (Н.К. - 70°С) подвергается демеркаптанизации путем щелочной очистки, а тяжелая фракция (70-215°С) - гидроочистке в присутствии катализатора гидроочистки - алюмо-никель-молибденового (АНМ) или алюмо-кобальт-молибденового (АКМ). Гидроочистку проводят последовательно в двух реакторах с промежуточной подачей водорода на охлаждение при температуре 240-315°С, давлении 2,5-2,6 МПа, объемной скорости подачи сырья 2,5 час-1, соотношении водородсодержащий газ (ВСГ)/сырье 200-250 н.об./об.

В результате содержание серы в гидрогенизате снижается от 0,1-0,3 мас.% до 30-50ррм, октановое число уменьшается на 1,5-2,0 пункта (ИМ).

После смешения очищенных легкой и тяжелой фракций каталитического крекинга получают базовые компоненты товарного автомобильного бензина с октановым числом 90 (ИМ) и содержанием серы 20-40 ррm (журнал «Экспозиция Нефть Газ», специализированное издание, 26 (46), ноябрь 2007, с.54-55).

К недостаткам указанного способа относится невозможность его применения при вовлечении в сырье процесса каталитического крекинга других дистиллатов термодеструктивного происхождения, например продуктов висбрекинга, т.к. указанные продукты способствуют быстрому закоксовыванию катализатора в процессе гидроочистки тяжелой бензиновой фракции и тем самым вызывают необходимость частых регенераций катализатора, что приводит к существенному снижению технико-экономических показателей.

Задачей предлагаемого изобретения является разработка способа получения автомобильного бензина на основе бензиновой фракции каталитического крекинга, позволяющего получать базовые компоненты товарного автомобильного бензина без заметного уменьшения выхода целевого продукта, с высоким октановым числом (порядка 90 ИМ) и минимальным содержанием серы, пригодные для использования в производстве автобензинов марок Евро-3, Евро-4, Евро-5, который позволяет вовлекать в сырье каталитического крекинга наряду с прямогонным вакуумным газойлем бензиновую фракцию термического процесса, в частности висбрекинга, с повышенным содержанием серы и непредельных углеводородов.

Поставленная задача решается предлагаемым способом получения автомобильного бензина на основе бензиновой фракции каталитического крекинга, включающей каталитический крекинг сырья, в качестве которого используют смесь прямогонного вакуумного газойля и бензиновой фракции висбрекинга в соотношении от 98:2 мас.% до 75:25 мас.%, с последующим разделением катализата ректификацией на легкую и тяжелую бензиновую фракцию каталитического крекинга, легкий и тяжелый каталитический газойль, последующую демеркаптанизацию легкой бензиновой фракции каталитического крекинга и гидроочистку тяжелой бензиновой фракции каталитического крекинга в присутствии катализатора гидроочистки, осуществляемую путем предварительного пропускания тяжелой бензиновой фракции каталитического крекинга через слой катализатора-сорбента на основе оксида алюминия, содержащего 1,0-1,5 мас.% оксида никеля и 3,0-4,0 мас.% триоксида молибдена, а затем через слой катализатора гидроочистки при соотношении высоты слоя катализатора-сорбента к высоте слоя катализатора гидроочистки, равном 1:10-25, с последующим смешением очищенной демеркаптанизацией легкой бензиновой фракции каталитического крекинга и гидроочищенной тяжелой бензиновой фракции каталитического крекинга в соотношении от 10:90 мас.% до 30:70 мас.% с получением базовых компонентов товарных автомобильных бензинов.

Следует отметить, что каталитический крекинг сырья проводят в присутствии цеолитсодержащего катализатора при температуре 490-520°С. В качестве катализатора используют микросферические цеолитсодержащие катализаторы (3-20 мас.% цеолита, равномерно распределенного в матрице) типа Х и У в редкоземельной обменной форме или в ультрастабильной форме. В качестве матрицы применяют синтетический аморфный алюмосиликат.

В процессе гидроочистки катализатор-сорбент загружается в реактор на входе газо-сырьевой смеси в виде колец Рашига. Указанный прием позволяет достигнуть глубокого обессмоливания и фильтрации сырья при частичной его гидроочистке.

В качестве катализатора гидроочистки используют алюмо-кобальт-молибденовый катализатор с содержанием оксида кобальта 4,0-5,0 мас.% и триоксида молибдена 12,0-15,0 мас.%, и процесс гидроочистки проводят при температуре 220-350°С, объемной скорости подачи сырья 1,0-3,5 час-1, давлении 2-3,5 МПа.

Легкая бензиновая фракция каталитического крекинга выкипает внутри интервала температур Н.К. - 75°С, а тяжелая - внутри интервала температур 75-215°С.

Также следует отметить, что в качестве сырья каталитического крекинга используют смесь прямогонного вакуумного газойля (пределы кипения 330-540°С, содержание серы 2,0-3,5 мас.%) и бензиновой фракции висбрекинга (пределы кипения 30-230°С, содержание серы 0,2-0,7 мас.%, йодное число 15-40 г иода на 100 г продукта) в соотношении от 98:2 мас.% до 75:25 мас.%.

В процессе каталитического крекинга при температуре 490-520°С бензин висбрекинга, входящий в состав сырья каталитического крекинга, практически не подвергается дальнейшей деструкции, а лишь частично освобождается от серы и изомеризуется, что способствует повышению октанового числа.

Полученный катализат подвергают ректификации с выделением жирных газов, легкой бензиновой фракции (Н.К. - 75°С), тяжелой бензиновой фракции (75-215°С), легкого газойля (фр. 215-360°С) и тяжелого газойля (фр. выше 360°С).

Легкую бензиновую фракцию (Н.К. - 75°С) подвергают процессу демеркаптанизации, что удаляет из нее меркаптаны с получением продукта, содержащего менее 50 ррm серы и октановым числом 92-95 (ИМ). Демеркаптанизацию осуществляют путем контакта легкой бензиновой фракции с водным раствором едкого натра (6-15%-ной концентрации) в присутствии катализатора, способствующего поглощению меркаптанов, при температуре 40°С и давлении 1,8 МПа.

Тяжелую бензиновую фракцию (75-215°С) направляют на гидроочистку, предварительно пропустив через слой катализатора-сорбента на основе оксида алюминия, содержащего 1,0-1,5 мас.% оксида никеля и 3,0-4,0 мас.% триоксида молибдена, а затем через слой катализатора гидроочистки при соотношении высоты слоя катализатора-сорбента к высоте слоя катализатора гидроочистки, равном 1:10-25. В процессе гидроочистки содержание серы понижается от 0,3-0,4 мас.% до 10-50 ррm с получением октанового числа продукта 85-90 (ИМ).

После смешения очищенных легкой и тяжелой бензиновой фракции получают базовый компонент товарного автомобильного бензина, характеризующийся содержанием серы 10-50 ррm, октановым числом 90-92 (ИМ). Указанный базовый компонент служит основой для приготовления товарных автомобильных бензинов марок АИ-80, АИ-92 и АИ-95 в соответствии со стандартами Евро-3, Евро-4 и Евро-5. Полученные автомобильные бензины (с добавлением спиртов, эфиров и присадок) являются экологически чистыми продуктами, содержащими менее 1 мас.% бензола, менее 35 мас.% ароматических углеводородов и менее 18 мас.% олефиновых углеводородов.

Указанные показатели качества обеспечивают высокие экологические свойства полученных автомобильных бензинов.

Пример 1.

Каталитическому крекингу подвергают смесь, состоящую из 98 мас.% сернистого вакуумного дистиллята (пределы кипения 350-520°С, содержание серы 2 мас.%) и 2 мас.% бензина висбрекинга (пределы кипения 30-230°С, содержание серы 0,3 мас.%, октановое число - 65 ИМ). Каталитический крекинг осуществляют в кипящем слое цеолитсодержащего катализатора при температуре 490°С.

Полученный катализат подвергают ректификации с выделением легкой бензиновой фракции (Н.К. - 75°С), тяжелой бензиновой фракции (75-200°С), а также легкого и тяжелого каталитического газойлей.

Легкую бензиновую фракцию, характеризующуюся содержанием серы 0,03 мас.% и октановым числом 95 ИМ, подвергают демеркаптанизации путем щелочной очистки с получением продукта, содержащего менее 30 ррm серы (октановое число 95 ИМ).

Тяжелую бензиновую фракцию, характеризующуюся содержанием серы 0,3 мас.% и октановым числом 92,5 (ИМ), подвергают гидроочистке при давлении 2 МПа, температуре 290°С, объемной скорости сырья - 1,0 час-1. Гидроочистку выделенной тяжелой бензиновой фракции каталитического крекинга проводят таким образом, что ее предварительно пропускают через слой катализатора-сорбента на основе оксида алюминия, содержащего 1,0-1,5 мас.% оксида никеля и 3,0-4,0 мас.% триоксида молибдена, а затем через слой катализатора гидроочистки при соотношении высоты слоя катализатора-сорбента к высоте слоя катализатора гидроочистки, равном 1:10.

В результате получают дистиллят, характеризующийся содержанием серы 40 ррm и октановым числом 89,5 (ИМ).

После смешения очищенных легкой и тяжелой бензиновых фракций в соотношении, соответственно, 20:80 мас.% получают продукт, содержащий менее 40 ррm серы при октановом числе 91,5 (ИМ).

Выход целевого продукта составляет 98 мас.% на исходное сырье. Указанный продукт служит базовым компонентом для производства товарного автомобильного бензина АИ-95 (после добавления спиртов, эфиров и др.), соответствующего стандарту Евро-5.

Пример 2.

Каталитическому крекингу подвергают смесь, состоящую из 75 мас.% сернистого вакуумного дистиллята (пределы кипения 330-540°С, содержание серы 3,5 мас.%) и 25 мас.% бензина висбрекинга (пределы кипения 40-210°С, содержание серы 0,5 мас.%, октановое число - 67 ИМ). Каталитический крекинг осуществляют в кипящем слое цеолитсодержащего катализатора при температуре 505°С.

Полученный катализат подвергают ректификации с выделением легкой бензиновой фракции (Н.К. - 75°С), тяжелой бензиновой фракции (75-210°С), а также легкого и тяжелого каталитического газойлей.

Легкую бензиновую фракцию, характеризующуюся содержанием серы 0,04 мас.% и октановым числом 96 (ИМ), подвергают демеркаптанизации путем щелочной очистки с получением продукта, содержащего менее 40 ррm серы (октановое число 96 ИМ).

Тяжелую бензиновую фракцию, характеризующуюся содержанием серы 0,4 мас.% и октановым числом 92 (ИМ), подвергают гидроочистке при давлении 3,5 МПа, температуре 350°С, объемной скорости сырья 3,5 час-1. Гидроочистку выделенной тяжелой бензиновой фракции каталитического крекинга проводят таким образом, что ее предварительно пропускают через слой катализатора-сорбента на основе оксида алюминия, содержащего 1,0-1,5 мас.% оксида никеля и 3,0-4,0 мас.% триоксида молибдена, а затем через слой катализатора гидроочистки при соотношении высоты слоя катализатора-сорбента к высоте слоя катализатора гидроочистки, равном 1:15.

В результате получают дистиллят, характеризующийся содержанием серы 30 ррm и октановым числом 89,5 (ИМ).

После смешения очищенных легкой и тяжелой бензиновых фракций при соотношении, соответственно, 25:75 мас.% получают продукт, содержащий менее 30 ррm серы при октановом числе 90 (ИМ).

Выход целевого продукта составляет 99 мас.% на исходное сырье.

Указанный продукт служит базовым компонентом для производства товарного автомобильного бензина АИ-92 (после добавления спиртов, эфиров и др.), соответствующего Евро-4.

Пример 3.

Каталитическому крекингу подвергают смесь, состоящую из 90 мас.% сернистого вакуумного газойля (пределы кипения 350-510°С, содержание серы 2,5 мас.%) и 10 мас.% бензина висбрекинга (пределы кипения 30-220°С, содержание серы 0,4 мас.%, октановое число - 64 ИМ). Каталитический крекинг осуществляют в кипящем слое цеолитсодержащего катализатора при температуре 520°С.

Полученный катализат подвергают ректификации с выделением легкой бензиновой фракции (Н.К. - 75°С), тяжелой бензиновой фракции (75-215°С), а также легкого и тяжелого каталитического газойлей.

Легкую бензиновую фракцию, характеризующуюся содержанием серы 0,05 мас.% и октановым числом 95,5 (ИМ), подвергают демеркаптанизации путем щелочной очистки с получением продукта, содержащего менее 10 ррm серы (октановое число 95,5 ИМ).

Тяжелую бензиновую фракцию, характеризующуюся содержанием серы 0,35 мас.% и октановым числом 91 (ИМ), подвергают гидроочистке при давлении 3,0 МПа, температуре 220°С, объемной скорости сырья - 2,5 час-1. Гидроочистку выделенной тяжелой бензиновой фракции каталитического крекинга проводят таким образом, что ее предварительно пропускают через слой катализатора-сорбента на основе оксида алюминия, содержащего 1,0-1,5 мас.% оксида никеля и 3,0-4,0 мас.% триоксида молибдена, а затем через слой катализатора гидроочистки при соотношении высоты слоя катализатора-сорбента к высоте слоя катализатора гидроочистки, равном 1:25.

В результате получают дистиллят, характеризующийся содержанием серы 30 ррm и октановым числом 89,5 (ИМ).

После смешения очищенных легкой и тяжелой бензиновых фракций в соотношении, соответственно, 27:73 мас.% получают продукт, содержащий менее 30 ррm серы при октановом числе 89,0 (ИМ).

Выход целевого продукта составляет 97 мас.% на исходное сырье.

Указанный продукт служит базовым компонентом для производства товарного автомобильного бензина АИ-80 (после добавления легких прямогонных и др. фракций), соответствующего стандарту Евро-3.

Таким образом, проведение гидроочистки выделенной тяжелой бензиновой фракции каталитического крекинга с предварительным пропусканием этой фракции через слой катализатора-сорбента, а затем через слой катализатора гидроочистки при соотношении высоты слоя катализатора-сорбента к высоте слоя катализатора гидроочистки, равном 1:10-25, смешение очищенной демеркаптанизацией легкой бензиновой фракции и гидроочищенной тяжелой бензиновой фракции при получении базовых компонентов автомобильных бензинов при определенных соотношениях позволяет получать базовые компоненты товарного автомобильного бензина без заметного уменьшения выхода целевого продукта, с высоким октановым числом (порядка 90 ИМ) и минимальным содержанием серы, пригодные для использования в производстве автобензинов марок Евро-3, Евро-4, Евро-5, при вовлечении в сырье каталитического крекинга наряду с прямогонным вакуумным газойлем бензиновой фракции термического процесса, в частности висбрекинга.

1. Способ получения автомобильного бензина на основе бензиновой фракции каталитического крекинга, включающий каталитический крекинг сырья, в качестве которого используют смесь прямогонного вакуумного газойля и бензиновой фракции вискрекинга в соотношении от 98:2 до 75:25 мас.%, с последующим разделением катализата ректификацией на легкую и тяжелую бензиновые фракции каталитического крекинга, легкий и тяжелый каталитический газойль, последующую демеркаптанизацию легкой бензиновой фракции каталитического крекинга и гидроочистку тяжелой бензиновой фракции каталитического крекинга в присутствии катализатора гидроочистки, осуществляемую путем предварительного пропускания тяжелой бензиновой фракции каталитического крекинга через слой катализатора-сорбента на основе оксида алюминия, содержащего 1,0-1,5 мас.% оксида никеля и 3,0-4,0 мас.% триоксида молибдена, а затем через слой катализатора гидроочистки при соотношении высоты слоя катализатора-сорбента к высоте слоя катализатора гидроочистки, равном 1:10-25, с последующим смешением очищенной демеркаптанизацией легкой бензиновой фракции каталитического крекинга и гидроочищенной тяжелой бензиновой фракции каталитического крекинга в соотношении от 10:90 до 30:70 мас.% с получением базовых компонентов товарных автомобильных бензинов.

2. Способ по п.1, отличающийся тем, что каталитический крекинг сырья проводят в присутствии цеолитсодержащего катализатора при температуре 490-520°С.

3. Способ по п.1, отличающийся тем, что в качестве катализатора гидроочистки используют алюмокобальтмолибденовый катализатор с содержанием оксида кобальта 4,0-5,0 мас.% и триоксида молибдена 12,0-15,0 мас.%, и процесс гидроочистки проводят при температуре 220-350°С, объемной скорости подачи сырья 1,0-3,5 ч-1, давлении 2-3,5 МПа.

4. Способ по п.1, отличающийся тем, что легкая бензиновая фракция каталитического крекинга выкипает внутри интервала температур Н.К. - 75°С, а тяжелая - внутри интервала температур 75-215°С.

www.findpatent.ru

Способ получения бензина

 

Изобретение может быть использовано непосредственно на промыслах в нефтяной и газовой промышленности. Бензин получают смешиванием бензиновых фракций, в качестве которых используют или продукт, выделенный гидроциклонированием, предварительно нагретой до 60-90°С нефти, в гидроциклоне с выделением парогазовой смеси из центра вращения потока и последующей ее конденсации при температуре 15-20°С, или газовый конденсат, выделенный при транспорте и охлаждении газа с кислородсодержащей добавкой, в качестве которой используют эфирную "головку" производства бутиловых спиртов, выкипающую в интервале 62-130°С в количестве 5-10 об.%, или кубовый остаток производства бутиловых спиртов в количестве 10-30 об.% или их смесь в соотношении об.%, эфирная головка 2-10, кубовый остаток - 3-20. Улучшаются детонационные свойства бензинов. 2 табл.

Изобретение может быть использовано в нефтеперерабатывающей промышленности, а также в нефтяной и газовой промышленности непосредственно на промыслах при первичной подготовке и переработке нефти и конденсата.

Известен способ /1/, в котором с целью получения широкой бензиновой фракции увеличения отбора и повышения производительности процесса, нагретую нефть подвергают однократному испарению в сепараторе высокого давления с последующей подачей образовавшейся паровой фазы в колонну ректификации. За счет того, что на ректификацию направляют только паровую фазу, уменьшаются нагрузки в колонне, что дает возможность повысить производительность способа. Как указывают авторы, этот способ позволяет увеличить отбор широкой бензиновой фракции на 0,4%, повысить качество готового продукта, а также повысить производительность способа путем снижения нагрузки на колонну ректификации /Маринин Н. С. и др. "Разгазирование и предварительное обезвоживание нефти в системе сбора", М., "Недра", с. 59/.

Известен способ /2/ путем нагрева нефти, ректификации в колонне при повышенных давлении и температуре, конденсации полученной при ректификации газовой головки с получением газового конденсата, отвода части этого конденсата в виде готового продукта и подачи оставшейся части конденсата на орошение в ректификационную колонну, в которой нагретую нефть предварительно подвергают сепарации при повышенном давлении с получением парового потока, который направляют в ректификационную колонну в качестве исходного сырья, и жидкого потока, который подают на испарение в емкость и подачу сконденсированного парового потока в ректификационную колонну в виде холодного и горячего орошения, а кубовый остаток отводят в качестве бензина-растворителя или смешивают со стабильной нефтью /Троянов В.П. "Промышленная подготовка нефти", М., "Недра", 1977, с. 287/.

Основным недостатком этих способов получения широкой бензиновой фракции является громоздкость процесса, заключающаяся в осуществлении его с помощью ректификационных колонн энергоемкость, т.к. известно, что увеличение выхода легких углеводородов связано с повышением температуры в колонне (низа - 240-300oC, верха - 140-160oC). Кроме того, процесс осуществляется при повышенных давлениях в колонне. Все это приводит к низкой удельной производительности способа, а значит, и малой эффективности и интенсивности /Быков В. А. "Технологические методы предотвращения потерь углеводородов на промысле", М., "Недра", 1988, с. 37/.

Наиболее близким техническим решением к предполагаемому изобретению является способ (см. Эфиры как компоненты моторных топлив. Ethers have good gasoline-blending attaibats Unzelman George H.//Oil and Gas -1989-87, N 5, p. 33-37), заключающийся в использовании эфиров с различными добавками нефтехимических производств.

Недостаток - низкое качество целевого продукта и повышенный расход добавок.

Цель изобретения - повышение эффективности способа путем интенсификации процесса получения бензина.

Поставленная цель достигается тем, что в качестве бензиновых фракций используют или продукт, выделенный гидроциклонированием, предварительно нагретой до 60-90oC нефти, в гидроциклоне с выделением парогазовой смеси из центра вращения потока и последующей ее конденсацией при температуре 15-20oC, или газовый конденсат, выделенный при транспорте и охлаждении газа, а в качестве кислородсодержащей добавки используют эфирную "головку" производства бутиловых спиртов, выкипающую в интервале 62-130oC в количестве 5-10% об., или кубовый остаток производства бутиловых спиртов в количестве 10-30% об. или их смесь в соотношении % об., эфирная головка - 2-10, кубовый остаток - 3-20.

Способ реализуется следующим образом.

Обезвоженную, обессоленную нефть подают в нагреватель и нагревают до 60-90oC. Нагрев нефти свыше 90oC экономически нецелесообразен и в промысловых условиях является пожароопасным мероприятием. Нагрев нефти ниже 60oC не дает желаемых результатов по интенсификации процесса получения бензина. Далее эту нефть подвергают гидроциклонированию, заключающуюся в направлении в камеру распределения гидроциклона, в которой эту нефть равномерно распределяют по всем гидроциклонным элементам за счет тангенциального ввода в камеру распределения. В каждом гидроциклонном элементе поток нефти закручивают с помощью вводного устройства, выполненного в виде постепенно сужающегося винтового прямоугольного канала до скорости закрутки на каждом гидроциклонном элементе порядка 35 м/с путем подачи жидкости под давлением 4 кгс/см2. Это позволит организовать внутри каждого гидроциклонного элемента такую гидродинамическую обстановку, когда в центре вращения потока в каждом элементе образуется парогазовый шнур, давление в котором заметно ниже давления жидкости при поступлении в аппарат. А это в свою очередь позволяет изменить коэффициент фазового равновесия "пар(газ) - жидкость" системы "нефть - газ" в сторону снижения температур. Поэтому в отличие от традиционных температур нагрева в 250-300oC достаточно нагреть нефть до 60-90oC, что заметно сокращает расход топлива. В то же время получение бензиновых фракций связано с методами ректификации в ректификационных колоннах. Предлагаемый метод получения бензиновых фракций по сравнению с этими методами позволяет сократить металлоемкость в 40-60 раз.

В емкости, на которой устанавливается мультигидроциклон, не только собирают стабильную нефть, но и улавливают капельную жидкость, унесенную вместе с парогазовой смесью через сливную трубку каждого гидроциклонного элемента. Для этого емкость на выходе парогазовой смеси снабжена каплеотбойником, представляющим собой гильзу с линзообразными тарелками из регулярных проволочных насадок, навитых по спирали Архимеда. Вогнутая часть этих тарелок обращена к парогазовому потоку. Парогазовую смесь направляют в конденсатор-холодильник, где производят интенсивный отбор тепла и конденсацию паров светлых углеводородов. Для этого поддерживают температуру в конденсаторе-холодильнике в пределах 15-20oC. Применение более низких температур экономически нецелесообразно, а более высокие температуры не дают ожидаемой интенсификации процесса. Далее смесь конденсата с газом подают в бензосепаратор, где отделяют под давлением не менее 1,3 кгс/см2 сухой газ и жидкий бензиновый продукт. Пониженное давление в бензосепараторе приводит к обеднению бензинового продукта бутан-бутиленовыми фракциями. Увеличение давления влечет за собой частичное повышенное растворение пропановых фракций, а значит, и загазованность товарного парка. Сухой газ направляют на сжигание в топку нагревателя, а бензиновый продукт смешивают с кислородсодержащими компонентами, являющимися отходами нефтехимических производств.

Использование предполагаемого изобретения позволит интенсифицировать процесс получения бензина из довольно-таки дешевых отходов нефтехимических производств.

Эфирная "головка" и кубовый остаток производства бутиловых спиртов приведены по данным производственного объединения "Салаватнефтеоргсинтез". Все эти продукты являются побочными продуктами предприятия и свободно реализуются. Пример увеличения октанового числа при добавлении кислородосодержащих соединений к базовому бензину показано в табл. 1 Кубовый остаток компаундируется с бензиновым продуктом без каких-либо осложнений.

Эфирная "головка", как правило, содержит 2-7% растворенной воды. При добавлении к бензиновому продукту вода выпадает в мелкодисперсном состоянии с образованием устойчивой эмульсии. При этом двигатели внутреннего сгорания работают на такой эмульсии без каких-либо осложнений. Примеры конкретного исполнения и полученные физико-химические свойства бензиновых топлив показаны в табл. 2 Экспериментальные исследования показали, что снижение добавки эфирной "головки" менее 5% об. не приводили к заметному улучшению моторных качеств бензина по октановому числу (детонационным свойствам), а увеличение свыше 20% об. не только не приводит к улучшению моторных качеств бензина, но и экономически является нецелесообразным, т.к. применяют эфирную "головку" производства бутиловых спиртов, в то же самое время снижение добавки кубового остатка 10% об. не приводит к заметному улучшению моторных качеств бензина, а увеличение его добавки свыше 30% об. приводит к ухудшению качества бензина по содержанию смол. Снижение добавки эфирной "головки" до 2% об. выполняется добавкой кубового остатка до 3% об., что в сумме составит не менее 5% об; увеличение объема добавок свыще 10% об. эфирной "головки" и 20% об. кубового остатка экономически нецелесообразны из-за возрастания транспортных расходов этих добавок. Кроме того, экспериментами доказано явление синергизма (усиление) эффекта улучшения качества моторных бензинов в результате добавок эфирной "головки" и кубового остатка в бензиновый продукт, выделенной с помощью ступенчатого мультигидроциклона. Благодаря только добавке этих компонентов в последовательности: бензиновый продукт, полученный гидроциклонированием с помощью ступенчатого мультигидроциклона + эфирная "головка" + кубовый остаток, позволили получить бензин соответствующий марки АИ-93 по ГОСТ 2084-77 с необходимыми отклонениями (начало кипения было не 35oC, а 29oC, ДНП не 500 мм рт. ст., а 600-700 мм рт. ст. и даже больше).

Способ получения бензина, включающий смешивание бензиновых фракций с кислородсодержащими добавками, повышающими его качество, отличающийся тем, что в качестве бензиновых фракций используют или продукт, выделенный гидроциклонированием, предварительно нагретой до 60 - 90oC нефти, в гидроциклоне с выделением парогазовой смеси из центра вращения потока и последующей ее конденсацией при температуре 15 - 20oC, или газовый конденсат, выделенный при транспорте и охлаждении газа, а в качестве кислородсодержащей добавки используют эфирную "головку" производства бутиловых спиртов, выкипающую в интервале 62 - 130oC в количестве 5 - 10 об.% или кубовый остаток производства бутиловых спиртов в количестве 10 - 30 об.%, или их смесь в соотношении об. %: эфирная головка - 2 - 10, кубовый остаток 3 - 20.

Рисунок 1, Рисунок 2

www.findpatent.ru


Смотрите также