Справочник химика 21. Пдк бензина дизтоплива мазута


Предельно-допустимые концентрации топлив - Справочник химика 21

    Таким образом, концентрация токсичных веществ в отработавших газах двигателей внутреннего сгорания может меняться в широких пределах. Наряду с такими факторами, как вид топлива, техническое состояние автомобиля, метеорологические условия, выброс вредных веществ зависит и от режима работы двигателя. В связи с этим необходимо оценить токсичность каждого из отдельных компонентов, когда все выбросы приведены к одному компоненту, принимаемому за эталон. Как правило, в качестве такого эталонного компонента принимается оксид углерода. Для наиболее типичных отработавших газов автомобильных двигателей ниже приведены предельно допустимые концентрации компонентов и относительная значимость Нг (отношение ПДК оксида углерода к ПДК компонента) [216]  [c.248]     Оксид углерода (СО). Ядовитый газ, не имеющий запаха и цвета. Образуется при горении богатой смеси (аполного окисления топлива. Его концентрация в выпускных газах двигателей с принудительным воспламенением может достигать 6% по объему. В дизелях всегда имеется избыток кислорода (а > 1), и концентрация оксида углерода составляет 0,2—0,3%. Сохраняется в атмосфере около 3—4 месяцев. Предельно допустимые концентрации в воздухе рабочих помещений —20 мг/м в населенных пунктах — 3 мг/ м (максимальная разовая) и 1 мг/м — среднесуточная. Оксид углерода, соединяясь с гемоглобином крови, дает устойчивое соединение — карбоксигемоглобин, затрудняющий процесс газообмена в клетках, что приводит к кислородному голоданию (сродство гемоглобина с оксидом углерода примерно в 210 раз выше его сродства с кислородом). Поэтому прямое воздействие состоит в уменьшении способности крови переносить кислород. Процесс образования карбоксигемоглобина обратимый. После прекращения вдыхания оксида углерода кровь пострадавшего начинает очищаться от него наполовину за каждые 3—4 часа. [c.329]

    Не менее интенсивно происходит загрязнение атмосферы. Предельно допустимые концентрации оксидов азота (II), углерода (II) и (IV), серы (IV) в воздухе еще не установлены. Основным загрязнителем атмосферы считают органическое топливо. В 1975 г. только в результате сжигания каменного угля на Земле было выброшено в атмосферу 10—12 млн. т сернистых соединений. И еще больше — в результате сжигания сернистых мазутов. [c.371]

    При переоборудовании на газовое топливо котлов и других установок выбор газовых горелок производится исходя из их тепловых нагрузок, диапазона регулирования, полноты сгорания газа, быстроты перехода на резервное жидкое или твердое топливо и простоты изготовления и монтажа. При этом обычно не обращается внимание на образование окислов азота, выход которых зависит как от конструктивных особенностей горелок, так и от способа их установки. Вместе с этим при сжигании газа окислы азота являются основными токсическими вредностями, загрязняющими атмосферу, и их предельно допустимая концентрация в воздухе в 35 раз ниже, чем окиси углерода. [c.5]

    Предельно допустимая концентрация паров топлива в воздухе рабочей зоны равна 300 мг/м . Дизельное топливо относится к малотоксичным веществам 4 класса опасности. Его действие проявляется в раздражении слизистых оболочек и кожи человека.  [c.158]

    В связи с тем, что образование отложений на иглах распылителей форсунок оказалось в зависимости от содержания меркаптанов в топливе, возникла необходимость установления их предельно допустимой концентрации, безвредной для работы двигателя. В лабораторных исследованиях было показано, что минимальное количество осадков в окисленных топливах образуется при оптимальной ингибирующей концентрации меркаптанов. Поскольку присутствие сильно разветвленных меркаптанов или конденсированных тиолов маловероятно, из табл. 4 и 8 и рис. 2 следует, [c.506]

    Предельно допустимые концентрации паров керосина и дизельного топлива в воздухе 0,3 мг л [5]. [c.720]

    Предельно допустимой концентрацией паров керосина и дизельного топлива в воздухе считается 0,3 мг л. [c.761]

    Нефтяное топливо представляет собой горючую жидкость, взрывоопасная концентрация его паров в смеси с воздухом составляет 2—3% предельно допустимая концентрация его паров в смеси с воздухом составляет 0,3 мг/л (в пересчете на углерод). [c.85]

    Сокращением срока пребывания в атмосфере, зараженной ядовитыми газами или парами компонентов топлива, предельная допустимая концентрация может быть несколько повышена, так, например, для окиси углерода СО, если время пребывания не более одного часа разрешается до 0,05 мг/м воздуха, а для времени пребывания в 15—20 мин может достигать даже 0,2 мг/м . Однако надо иметь в виду, что ряд веществ с особенно высокой токсичностью, таких как фтор, окислы азота, производные фтора и хлора и др., не допускает даже незначительных отклонений от установленных норм. [c.52]

    ОЦЕНКА ПРЕДЕЛЬНО ДОПУСТИМЫХ КОНЦЕНТРАЦИЙ ЗОЛЫ РАЗНЫХ МЕСТОРОЖДЕНИЙ С УЧЕТОМ СОСТАВА ТОПЛИВА [19.8] [c.538]

    В промышленности органического синтеза начинают получать распространение аппараты погружного горения При сгорании в них 1 кг нефти испаряется более 15 кг воды (в паровом котле испаряется 12, а в двухкорпусной выпарной батарее 6 кг воды). Основное достоинство этих аппаратов при выпаривании растворов минеральных солей, содержащих органические примеси, заключается в отсутствии нагревательных элементов, на кото ых могут отлагаться осадки (соли, смолы, пеки). Летучие органические примеси удаляются через дымовые трубы вместе с продуктами сгорания топлива и парами воды. Высоту выброса следует выбирать с таким расчетом, чтобы вредные примеси рассеивались до предельно допустимых концентраций, не достигая приземного слоя воздуха. [c.194]

    Токсичность паров дизельного топлива обычно выше, чем бензина, но из-за меньшей испаряемости концентрация этих паров в воздухе бывает значительно меньше. Предельно допустимая концентрация паров дизельного топлива 0,3 мг/л воздуха. Меры профилактики и первая помощь такие же, как и при обращении с бензинами. [c.79]

    Характер строительной площадки. После выбора экономического района, отвечающего требованиям в отношении наличия сырья, основных материалов, топлива и электроэнергии, возможностей сбыта волокна, трудовых ресурсов, намечают пункт строительства завода и строительную площадку для его размещения. Здесь прежде всего важно учитывать санитарно-технические условия площадки. Они должны удовлетворять требованиям общегосударственных санитарных норм (расстояние между заводом и населенными пунктами предельно допустимые концентрации вредных веществ в выбрасываемых производственных газах и сточных водах). Следует учитывать также близость площадки к водоему (реке) и разность в отметках уровня зеркала реки и площадки, так как это влияет на капитальные и эксплуатационные затраты по забору воды и спуску сточных вод. При выборе площадки очень важно предусмотреть возможность кооперирования общезаводских сооружений (ТЭЦ или котельной, водопровода и канализации, подъездных путей, коммунально-бытовых учреждений и др.) с соседними предприятиями. [c.61]

    Учитывая необходимость экономии топлива и более высокую токсичность окислов азота (предельно допустимая концентрация NOx в атмосферном воздухе 0,085 мг/м ) по сравнению с окисью углерода (3 мг/м ), в рассматриваемом случае следует принимать в качестве оптимального значения ат= 1,10- -1,15, при котором работа печи сопровождается наименьшим расходом топлива и меньшим образованием NOx. [c.128]

    По данным службы здравоохранения США, предельно допустимая среднесуточная концентрация в воздухе составляет 0,1 млн 1 (в СССР 0,05 мг/м ). Считают , что такая норма может быть обеспечена, если котельные топлива будут содержать не более 1% серы, а во многих случаях и значительно меньше [c.13]

    При относительно малом угаре масла, т. е. при K Qy предельное значение концентрации присадки Ссопредельно допустимого уровня Смин. Согласно данным [36], Смин З, где 5—содержание серы в топливе, %. По другим данным, минимально допустимая щелочность различна для масла различных марок и составляет при содержании серы в топливе до 0,5% 1,5—2,0 мг КОН/г, а при содержании серы до 1 % — 2—5 мг КОН/г. [c.118]

    В схожих условиях оказалась угольная энергетика США в середине 80-х гг,, когда были приняты новые жесткие нормы предельно допустимых выбросов в окружающую среду, приведшие к увеличению затрат электрических компаний на решение экологических проблем. Реакцией промышленников явился переход к производству нового (третьего) поколения обогащенного топлива с высокой концентрацией энергии, малой зольностью и низким содержанием серы. [c.50]

    Эти пределы могут ограничиваться уже другими факторами, в основном — устойчивостью создаваемого горелкой фронта воспламенения. Если верхний предел форсировки недостаточно велик, приходится усложнять горелку уже за счет введения мероприятий, связанных с усилением стабилизации фронта воспламенения. Однако для диффузионного метода пределы допустимых форсировок, не нарушающих устойчивости очага горения, гораздо шире, чем при методе кинетическом. Такая устойчивость диффузионного очага горения (в противовес кинетическому) в значительной мере должна объясняться предельной неоднородностью газового потока по концентрации, т. е. по избытку окислителя, который численно меняется в этом случае по сечению потока от нуля (чистое топливо) до бесконечности (чистый окислитель). [c.126]

    Безопасиость обращения с топливом оценивается токсичностью (класс токсичности, предельно допустимые концентрации в рабочей зоне, в атмосфере населенных пунктов, водоемов, цвет и интенсивность окраски, концентрация свинца)  [c.21]

    Нитроорганические отходы взрывоопасны и при их сжигании образуются окислы азота. Для уменьшения образования КОл до предельно допустимых концентраций существует несколько способов. Один из них — низкотемпературное (980—1095 °С) сжигание в больших камерах сгорания с длительным периодом нахождения в них перерабатываемых отходов. Применяется также двухступенчатая система сжигания, в которой первичная камера сгорания работает с избытком топлива, а несгоревшие углеводороды затем окисляются во вторичной камере. Такая система преследует цель уменьшения образования окислов азота в высокотемпературной зоне путем удаления кислорода, способствующего их образованию. [c.139]

    Содержание аммиака в воздухе рабочих помешений и населенных мест ограничивается следующими концентрациями ПДКр.з = 20 мг/м ПДКм.р = 0,2 мг/м и ПДКс.с = 0,2 мг/м т. е. предельно-допустимые концентрации паров аммиака в воздухе в 3—4 раза выше по сравнению с метанолом. Кроме того, опасность аммиака в значительной степени снижается резким специфическим запахом, благодаря которому он обнаруживается уже при концентрациях паров 0,05 мг/м . Поэтому токсикологическое воздействие аммиачного топлива можно свести тс минимуму при герметизации топливной системы автомобиля и соблюдении соответствующих мероприятий техники безопасности. [c.190]

    Основным источником загрязнения воздушного бассейна городов являются вредные компоненты, содержащиеся в продуктах сгорания. К ним относятся зола, твердые частицы топлива, механические примеси оксиды серы, азота, свинца оксид углерода продукты неполного сгорания топлива. В большинстве современных производственных процессов технологические циклы не обеспечивают очистку выбросов. По данным М. А. Стыриковича, в мире за год выбросы твердых веществ составляют 100, ЗОг—150, СО — 300, оксидов азота — 50 млн. т. При сжигании твердого и жидкого топлива образуются ароматические канцерогенные углеводороды, один из которых — 3,4-бензпирен С20Н12, присутствующий в почве, воздухе и воде (предельно допустимая концентрация 0,00015 мг/дм ). [c.364]

    Цианистый водород H N — сильнейший яд, содержащийся в небольших количествах в газах сухой перегонки топлива. Предельное содержание H N в газах, применяемых для городского газоснабжения, не выше 0,05 мг1л, предельно допустимая концентрация в воздухе промышленных предприятий — 0,0003 мг1л. [c.22]

    Все искусственные горючие газы, полученные в результате термической переработки твердого топлива, содержат в том или ином количестве серусодержащие соединения. Первоисточником сернистых соединений в газе является сера исходного топлива. В процессе термической переработки топлива (полукоксования, коксования, газификации и др.) входящие в него вещества, содержащие серу, претерпевают изменения и в некоторой части переходят в газ в виде неорганических и органических соединений в зависимости от характера соединений серы в топливе и от способа переработки его. Например, при коксовании в газ переходит 25—40% серы, при газификации 65—90%. В газе сера содержится главным образом в виде неорганических соединений Нг8 (до 95%) и в небольшом количестве в виде органических сероуглерода ( Sa), сероокисиуглерода OS, меркаптанов (RSH), тиоэфиров R—S—R и др. Содержание сернистых соединений в газе зависит от количества серы в исходном топливе. Наличие сернистых соединений в газе во многих случаях нежелательно, а иногда и вовсе недопустимо. Бытовой газ может содержать лишь незначительное количество соединений, содержащих серу. Сероводород является сильным ядом предельно допустимая концентрация его в воздухе производственных помещений принята 0,01 мг л. При горении сернистые соединения образуют сернистый ангидрид, который также вызывает отравления организма. Сернистые соединения, содержащиеся в газе, который применяется в металлургической и стекольной промышленности, значительно снижают качество металла и стекла. Серусодержащие соединения, находящиеся в газе, корродируют аппаратуру. Особенно большие требования предъявляются к синтез-газу по содержанию сернистых соединений, так как они отравляют контактную массу, снижая тем самым ее активность. Поэтому в синтез-газе допускаются лишь следы сернистых соединений. При очистке газа от сероводорода можно получать товарную серу. [c.297]

    Собранные отработавшие промышленные жидкости, в составе которых находится бензин, керосин и дизельное топливо, горючи. Взрывоопасная концентрация бензина в смеси с воздухом составляет 1—6% по обьему предельно допустимая концентрация паров углеводородов в воздухе 300 мг/м. При хранении отработавших нефтепродуктов помещения, искусственное освещение и приточновытяжная вентиляция должны быть выполнены во взрывобезопасном исполнении. [c.176]

    Дымовая труба позволяет создавать разрежение, необходимое для движения продуктов горения топлива и реакционных газов, выделяющихся при технологическом процессе в печи, от топки, через рабочее пространство печи, систему дымоходов и тенлоиснользующих устройств с удалением их в окружающее пространство на достаточно большой высоте. В большинстве случаев, выбрасываемые газы от печей в химической промышленности содержат вредные вещества, предельно допустимые концентрации которых регламентированы санитарными нормами проектирования промышленных предприятий. Поэтому, после определения высоты трубы по необходимому разрежению, необходима проверка на удельные концентрации газа у поверхности земли. В случае необходимости увеличения высоты трубы, для создания допустимых удельных концентраций газов, [c.140]

    Присутствие многих токсических веществ может быть обнаружено по запаху или по раздражающему действию на слизистые оболочки, вызывающему слезотечение или кашель. Однако в большинстве случаев токсические вещества обнаруживаются органами чувств человека в концентрациях, значительно больших, чем предельно допустимые. Для обнаружения токсических веществ, не действующих на органы чувств человека или действующих в концентрациях выше предельно допустимых, необходимо применение специфичных реактивов, например образующих с топливом цветные продукты реакции. Очень чувствительным к окислению азота является реактив Грисса — Илосвая, образующий с ним азокраситель розового цвета, к аминам — хлорат алюминия (синяя окраска), к аммиаку — солянокислый раствор нитроанилина с несколькими крупинками азотистокислого натрия (красный цвет), к сероводороду — раствор ацетата свинца (черная окраска), к углероду — 5% раствор хлористого палладия (черная окраска). [c.264]

    Наиболее крупнотоннажным продуктом нефтепереработки являются остаточные топлива (топочные мазуты). Основное количество этих топлив вырабатывают из сернистых и высокосернистых нефтей, вследствие чего содержание в топливах серы часто превышает Ъ%. Сжигание таких топлив сопровождается значительными выбросами в окружающую атмосферу оксидов серы. В СССР предельно допустимая разовая концентрация ЗО2 принята равной 0,05 мг/м . Такие нормы могут быть обеспечены при содержании в котельных топливах серы не более 1%. В США и Штонии для ТЭЦ, расположенных Б густонаселенных районах, норма на содержание в котельном топливе серЬ еще ниже и составляет О,3-0,5%. [c.12]

    Пожарно-профилактические мероприятия. Для исключения образования горючих концентраций в сушильных камерах устанавливают предельно допустимый температурный режим работы и осуществляют за ним автоматический контроль. Автоматические регуляторы поддерживают заданную температуру за счет изменения количества теплоносителя (топливо или напрял бние). Вентиляционная система обеспечивает взрывобезопасную концентрацию паров и газов в сушильной камере. Для контроля за концентрациями паров в сушилке устанавливают автоматические газоанализаторы, обеспечивающие подачу сигнала при достижении концентрации, равной 20 % Снпв. При отсутствии серийно выпускаемых газоанализаторов для паров данного растворителя предусматривают лабораторный контроль концентрации паров в воздухе, периодически отбирая пробы. [c.208]

chem21.info

ГОСТ 10585-99 Топливо нефтяное. Мазут. Технические условия

Топливо нефтяное. Мазут. Технические условия

ГОСТ 10585-99

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ТОПЛИВО НЕФТЯНОЕ.

МАЗУТ

Технические условия

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ

Минск

Предисловие

1 РАЗРАБОТАН Межгосударственным техническим комитетом МТК 31 «Нефтяные топлива и смазочные материалы» (Всероссийским научно-исследовательским институтом по переработке нефти (ОАО «ВНИИ НП»), Всероссийским теплотехническим научно-исследовательским институтом (АООТ «ВТИ»)

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 15-99 от 28 мая 1999 г.)

За принятие проголосовали:

Наименование государства

Наименование национального органа по стандартизации

Республика Узбекистан

Узгосстандарт

Республика Армения

Армгосстандарт

Киргизская Республика

Киргизстандарт

Республика Таджикистан

Таджикгосстандарт

Республика Беларусь

Госстандарт Беларуси

Республика Молдова

Молдовастандарт

Азербайджанская Республика

Азгосстандарт

Республика Казахстан

Госстандарт Республики Казахстан

Туркменистан

Главная государственная инспекция Туркменистана

Российская Федерация

Госстандарт России

Украина

Госстандарт Украины

3 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 21 сентября 1999 г. № 298-ст межгосударственный стандарт ГОСТ 10585-99 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 2001 г.

4 ВЗАМЕН ГОСТ 10585-75

СОДЕРЖАНИЕ

1 Область применения 2

2 Нормативные ссылки 2

3 Марки 3

4 Технические требования 4

5 Требования безопасности 5

6 Правила приемки 7

7 Методы испытаний 7

8 Транспортирование и хранение 7

9 Гарантии изготовителя 8

ПРИЛОЖЕНИЕ А (рекомендуемое) 8

Библиография 8

ГОСТ 10585-99

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ТОПЛИВО НЕФТЯНОЕ.

МАЗУТ

Технические условия

Oil fuel. Mazut

Specifications

Дата введения 2001-01-01

Настоящий стандарт распространяется на мазут, получаемый из продуктов переработки нефти, газоконденсатного сырья и предназначенный для транспортных средств, стационарных котельных и технологических установок.

Обязательные требования к качеству продукции, обеспечивающие ее безопасность для жизни, здоровья и имущества населения, охраны окружающей среды, изложены в 4.3 и разделах 6 и 7.

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 12.1.005-88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.007-76 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 12.1.018-93 Система стандартов безопасности труда. Пожаровзрывобезопасность статического электричества. Общие требования

ГОСТ 12.1.044-89 (ИСО 4589-84) Система стандартов безопасности труда. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения

ГОСТ 12.4.011-89 Система стандартов безопасности труда. Средства защиты работающих. Общие требования и классификация

ГОСТ 12.4.021-75 Система стандартов безопасности труда. Системы вентиляционные. Общие требования

ГОСТ 12.4.034-85 Система стандартов безопасности труда. Средства индивидуальной защиты органов дыхания. Классификация и маркировка

ГОСТ 12.4.068-79 Система стандартов безопасности труда. Средства индивидуальной защиты дерматологические. Классификация и общие требования

ГОСТ 12.4.103-83 Система стандартов безопасности труда. Одежда специальная защитная, средства индивидуальной защиты ног и рук. Классификация

ГОСТ 12.4.111-82 Система стандартов безопасности труда. Костюмы мужские для защиты от нефти и нефтепродуктов. Технические условия

ГОСТ 12.4.112-82 Система стандартов безопасности труда. Костюмы женские для защиты от нефти и нефтепродуктов. Технические условия

ГОСТ 17.2.3.02-78 Охрана природы. Атмосфера. Правила установления допустимых выбросов вредных веществ промышленными предприятиями

ГОСТ 33-82 Нефтепродукты. Метод определения кинематической и расчет динамической вязкости

ГОСТ 1027-67 Свинец (II) уксуснокислый 3-водный. Технические условия

ГОСТ 1437-75 Нефтепродукты темные. Ускоренный метод определения серы

ГОСТ 1461-75 Нефть и нефтепродукты. Метод определения зольности

ГОСТ 1510-84 Нефть и нефтепродукты. Маркировка, упаковка, транспортирование и хранение

ГОСТ 1929-87 Нефтепродукты. Методы определения динамической вязкости на ротационном вискозиметре

ГОСТ 2477-65 Нефть и нефтепродукты. Метод определения содержания воды

ГОСТ 2517-85 Нефть и нефтепродукты. Методы отбора проб

ГОСТ 3118-77 Кислота соляная. Технические условия

ГОСТ 3877-88 Нефтепродукты. Метод определения серы сжиганием в калориметрической бомбе

ГОСТ 3900-85 Нефть и нефтепродукты. Методы определения плотности

ГОСТ 4328-77 Натрия гидроокись. Технические условия

ГОСТ 4333-87 Нефтепродукты. Методы определения температур вспышки и воспламенения в открытом тигле

ГОСТ 4517-87 Реактивы. Методы приготовления вспомогательных реактивов и растворов, применяемых при анализе

ГОСТ 6258-85 Нефтепродукты. Метод определения условной вязкости

ГОСТ 6307-75 Нефтепродукты. Метод определения наличия водорастворимых кислот и щелочей

ГОСТ 6356-75 Нефтепродукты. Метод определения температуры вспышки в закрытом тигле

ГОСТ 6370-83 Нефть, нефтепродукты и присадки. Метод определения механических примесей

ГОСТ 12026-76 Бумага фильтровальная лабораторная. Технические условия

ГОСТ 19433-88 Грузы опасные. Классификация и маркировка

ГОСТ 19932-74 Нефтепродукты. Метод определения коксуемости по Конрадсону

ГОСТ 20287-91 Нефтепродукты. Методы определения температур текучести и застывания

ГОСТ 21261-91 Нефтепродукты. Метод определения высшей теплоты сгорания и вычисление низшей теплоты сгорания

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 29227-91 Посуда лабораторная стеклянная. Часть 1. Пипетки градуированные. Общие требования

3.1 В зависимости от назначения, содержания серы и зольности устанавливаются следующие марки мазута:

Флотский Ф5 видов:

II - ОКП 02 5213 0100

IV - ОКП 02 5213 0102

Флотский Ф12 - ОКП 02 5213 0101

Топочный 40 (ОКП 02 5211 0100) видов:

малозольный зольный

I ОКП 02 5211 0105 ОКП 02 5211 0101

II ОКП 02 5211 0106 ОКП 02 5211 0102

III ОКП 02 5211 0109 ОКП 02 5211 0113

IV ОКП 02 5211 0107 ОКП 02 5211 0103

V ОКП 02 5211 0111 ОКП 02 5211 0114

VI ОКП 02 5211 0112 ОКП 02 5211 0115

VII ОКП 02 5211 0108 ОКП 02 5211 0104

Топочный 100 (ОКП 02 5211 0200) видов:

малозольный зольный

I ОКП 02 5211 0205 ОКП 02 5211 0201

II ОКП 02 5211 0206 ОКП 02 5211 0202

III ОКП 02 5211 0209 ОКП 02 5211 0213

IV ОКП 02 5211 0207 ОКП 02 5211 0203

V ОКП 02 52110211 ОКП 02 5211 0214

VI ОКП 02 5211 0212 ОКП 02 5211 0215

VII ОКП 02 5211 0208 ОКП 02 5211 0204

3.2 В обозначение мазута должна входить марка и дополнительно:

для флотского мазута Ф5 - классификация по сере;

для топочных мазутов - классификация по сере, зольности и температуре застывания.

Примеры обозначения:

- флотский мазут Ф12;

- флотский мазут Ф5, II вида;

- топочный мазут 100, IV вида, малозольный, с температурой застывания 25°С.

3.3 Мазут марки Ф5 получают из продуктов прямой перегонки нефти с добавлением до 22% керосино-газойлевых фракций каталитического или термического крекинга.

3.4 Разрешается добавлять в мазуты депрессорную присадку, допущенную к применению в установленном порядке. При поставке флотского мазута Ф5 ВМФ в паспорте указывают наличие депрессорной присадки.

4.1 Мазут должен изготовляться по технологии, утвержденной в установленном порядке.

4.2 Мазут марок Ф5 и Ф12 для Военно-Морского Флота России изготовляют по технологии, из сырья и компонентов, которые применялись при выработке образцов, прошедших испытания с положительными результатами и допущенных к применению в установленном порядке.

4.3 По физико-химическим показателям мазут должен соответствовать требованиям, указанным в таблице 1.

4.4 Упаковка, маркировка - по ГОСТ 1510.

Маркировка, характеризующая транспортную опасность мазута, по ГОСТ 19433: класс - 3, подкласс - 3.3, знак опасности - по черт. 3, классификационный шифр - 3313.

Таблица 1

Наименование показателя

Значение для марки

Метод испытания

Ф5

Ф12

40

100

1 Вязкость при 50°С, не более:

условная, градусы ВУ

5,0

12,0

-

-

По ГОСТ 6258

или кинематическая, м2/с (сСт)

36,2 × 10-6 (36,2)

89×10-6 (89)

-

-

По ГОСТ 33

2 Вязкость при 80°С, не более:

условная, градусы ВУ

8,0

16,0

По ГОСТ 6258

или

кинематическая, м2/с (сСт)

-

-

59,0×10-6 (59,0)

118×10-6 (118,0)

По ГОСТ 33

3 Вязкость при 100°С, не более:

условная, градусы ВУ

-

-

-

6,8

По ГОСТ 6258

или

кинематическая, м2/с (сСт)

-

-

-

50,0×10-6 (50,0)

По ГОСТ 33

4 Динамическая вязкость при 0°С, Па-с, не более

0,1 × 27

-

-

-

По ГОСТ 1929

5 Зольность, %, не более, для мазута: малозольного

-

-

0,04

0,05

По ГОСТ 1461 или по приложению [1]

Зольного

0,05

0,10

0,12

0,14

6 Массовая доля механических примесей, %, не более

0,10

0,12

0,5

1,0

По ГОСТ 6370

7 Массовая доля воды, %, не более

0,3

0,3

1,0

1,0

По ГОСТ 2477 или по приложению [2]

8 Содержание водорастворимых кислот и щелочей

Отсутствие

По ГОСТ 6307

9 Массовая доля серы, %, не более, для мазута видов:

По 7.3

I

-

-

0,5

0,5

II

1,0

0,6

1,0

1,0

III

-

-

1,5

1,5

IV

2,0

-

2,0

2,0

V

-

-

2,5

2,5

VI

-

-

3,0

3,0

VII

-

-

3,5

3,5

10 Коксуемость, %, не более

6,0

6,0

-

-

По ГОСТ 19932 или по приложению [3]

11 Содержание сероводорода

Отсутст­вие

-

-

-

По 7.2

12 Температура вспышки, °С, не ниже: в закрытом тигле

80

90

-

-

По ГОСТ 6356 или по приложению [4]

в открытом тигле

-

-

90

110

По ГОСТ 4333 или по приложению [5]

13 Температура застывания, °С, не выше

-5

-8

10

25

По ГОСТ 20287 или по приложению [6]

для мазута из высокопарафинистых нефтей

-

-

25

42

14 Теплота сгорания (низшая) в пересчете на сухое топливо (небраковочная), кДж/кг, не менее, для мазута видов:

По ГОСТ 21261

I, II, III и IV

41454

41454

40740

40530

V, VI и VII

-

-

39900

39900

15 Плотность при 20°С, кг/м3, не более

955

960

Не нормируется. Определение обязательно

По ГОСТ 3900

Примечания:

1 В I и IV кварталах в мазутах марок 40 и 100 допускается температура вспышки в открытом тигле не ниже 65°С, в закрытом тигле - не ниже 50°С с указанием значения показателя в договорах и контрактах. Такие мазута не предназначены для судовых энергетических установок.

2 Мазута марок 40 и 100, изготовленные из высокопарафинистых нефтей, не предназначены для судовых котельных установок.

3 Показатель 15 для мазута марок 40 и 100 определяется для осуществления приемо-сдаточных операций. При поставке мазутов Ф5, Ф12, 40 и 100 на экспорт показатель 15 определяется по [7] и не является браковочным.

4 В мазуте марок 40 и 100, вырабатываемом из газоконденсатного сырья, сероводород должен отсутствовать. Определение сероводорода - по 7.2.

5 Показатель 3 для топочного мазута марки 100 является небраковочным до 01.01.2003, а показатель 2 для топочного мазута марки 100 нормируется до 01.01.2003.

5.1 Мазут является малоопасным продуктом и по степени воздействия на организм человека относится к 4-му классу опасности в соответствии с ГОСТ 12.1.007.

5.2 Предельно допустимая концентрация паров углеводородов в воздухе рабочей зоны - 300 мг/м3 в соответствии с ГОСТ 12.1.005.

ПДК в воздухе рабочей зоны определяется хроматографическим или другим метрологически аттестованным методом. Для контроля концентрации паров углеводородов в воздухе рабочей зоны допускается использовать универсальный газовый анализатор УГ-2 или другой прибор аналогичного назначения.

Охрана атмосферы воздуха - по ГОСТ 17.2.3.02.

Содержание мазута в воде недопустимо и определяется визуально наличием масляной пленки на поверхности воды.

5.3 Мазут раздражает слизистую оболочку и кожу человека, вызывая ее поражение и возникновение кожных заболеваний.

Длительный контакт с мазутом увеличивает степень риска заболевания органов дыхания у человека.

5.4 Мазут не обладает способностью образовывать токсичные соединения в воздушной среде и сточных водах в присутствии других веществ или факторов при температуре окружающей среды.

5.5 В соответствии с ГОСТ 12.1.044 мазут представляет собой горючую жидкость с температурой самовоспламенения 350°С, температурными пределами распространения пламени 91-155°С. Взрывоопасная концентрация паров мазута в смеси с воздухом составляет: нижний предел - 1,4%, верхний - 8%.

5.6 При загорании мазута применяют следующие средства пожаротушения: углекислый газ, химическую пену, распыленную воду, порошок ПСБ-3; в помещениях - объемное тушение.

5.7 В помещениях для хранения и эксплуатации мазута запрещается обращение с огнем, электрооборудование, электрические сети и арматура искусственного освещения должны быть во взрывозащищенном исполнении.

Емкости для хранения и транспортирования мазута должны быть защищены от статического электричества в соответствии с ГОСТ 12.1.018.

При работе с мазутом не допускается использовать инструменты, дающие при ударе искру.

5.8 Помещения, в которых проводят работы с мазутом, должны быть снабжены обменной приточно-вытяжной вентиляцией с механическим побуждением, отвечающей требованиям ГОСТ 12.4.021.

В местах возможного выделения химических веществ в воздух рабочей зоны должны быть оборудованы местные вытяжные устройства.

В помещениях для хранения мазута не допускается хранить кислоты, баллоны с кислородом и другие окислители.

5.9 При разливе мазута необходимо собрать его в отдельную тару, место разлива промыть мыльным раствором или моющим средством, затем промыть горячей водой и протереть сухой ветошью.

При разливе на открытой площадке место разлива засыпать песком с последующим его удалением и обезвреживанием.

5.10 Оборудование, используемое в технологических процессах и операциях, связанных с производством, транспортированием и хранением данного продукта, должно быть герметичным.

При производстве, хранении и применении мазута не допускается попадание мазута в системы бытовой и ливневой канализации, а также в открытые водоемы.

5.11 При работе с мазутом применяют средства индивидуальной защиты по ГОСТ 12.4.011, ГОСТ 12.4.103, ГОСТ 12.4.111, ГОСТ 12.4.112, а также по типовым отраслевым нормам, утвержденным в установленном порядке.

В местах с концентрацией паров мазута, превышающей ПДК, применяют противогазы марок А, БКФ, шланговые противогазы марки ПШ-1 или аналогичные в соответствии с ГОСТ 12.4.034.

5.12 При попадании мазута на открытые участки тела необходимо его удалить и обильно промыть кожу водой с мылом или моющим средством; при попадании на слизистую оболочку глаз - обильно промыть теплой водой. Для защиты кожи рук применяют защитные рукавицы, мази и пасты - по ГОСТ 12.4.068.

5.13 Все работающие с мазутом должны проходить периодические медицинские осмотры в порядке, установленном органами здравоохранения.

6.1 Мазут принимают партиями. Партией считают любое количество мазута, изготовленного в ходе непрерывного технологического процесса, однородного по своим показателям качества и сопровождаемого одним документом о качестве.

6.2 При получении неудовлетворительных результатов испытаний хотя бы по одному показателю проводят повторные испытания вновь отобранной пробы из той же выборки. Результаты повторных испытаний распространяются на всю партию.

6.3 В мазутах марок 40 и 100 показатели 6, 8, 14 (см. таблицу) гарантирует изготовитель. Показатели 6, 8 определяют периодически не реже одного раза в месяц, а показатель 14 - не реже одного раза в квартал.

При получении неудовлетворительных результатов периодических испытаний изготовитель переводит испытания по данному показателю в категорию приемо-сдаточных до получения удовлетворительных результатов не менее чем на трех партиях подряд.

7.1 Отбор проб мазута - по ГОСТ 2517. Для объединенной пробы берут 2,0 дм3.

7.2 Определение сероводорода

7.2.1 Аппаратура и реактивы

Воронка стеклянная по ГОСТ 25336.

Пробирка стеклянная по ГОСТ 25336.

Натрия гидроксид по ГОСТ 4328, раствор с массовой долей 2%.

Кислота соляная по ГОСТ 3118.

Свинец уксуснокислый по ГОСТ 1027.

Бумага фильтровальная по ГОСТ 12026.

Термометр с ценой деления 1°С и погрешностью измерения не более 0,5°С по нормативной документации.

Секундомер любого типа с погрешностью измерения не более 0,2 с.

Пипетка по ГОСТ 29227.

Водяная баня любого типа, обеспечивающая погружение пробирки на 20 мм ниже уровня нефтепродукта.

7.2.2 Проведение испытания

В делительную воронку вместимостью 100 см3 наливают 10 см3 мазута и 10 см3 раствора гидроксида натрия, тщательно взбалтывают содержимое воронки в течение 5-10 мин. После отстоя сливают из воронки через кран 3-5 см3 водного слоя в стеклянную пробирку диаметром 15-20 мм и приливают в пробирку 0,4-0,6 см3 соляной кислоты.

Пробирку помещают в водяную баню, которую нагревают до 25°С при постоянном взбалтывании содержимого пробирки. Одновременно с началом нагревания в верхнюю часть пробирки помещают индикаторную бумагу, пропитанную раствором уксуснокислого свинца, приготовленную по ГОСТ 4517. Индикаторную бумагу во время испытания поддерживают во влажном состоянии, смачивая ее водой из пипетки.

Изменение окраски индикаторной бумаги от светло-коричневой до темно-коричневой указывает на присутствие сероводорода в мазуте.

7.3 Определение серы

7.3.1 Массовую долю серы для мазута всех марок определяют по ГОСТ 1437 или ГОСТ 3877, при разногласиях в оценке качества мазута определение проводят по ГОСТ 3877.

8.1 Транспортирование и хранение - по ГОСТ 1510.

9.1 Изготовитель гарантирует соответствие качества мазута требованиям настоящего стандарта при соблюдении условий транспортирования и хранения 5 лет со дня изготовления.

[1] ASTM Д 482-90 Метод определения золы в нефтепродуктах

[2] ASTM Д 95-90 Метод определения содержания воды в нефтепродуктах и битуминозных материалах

[3] ASTM Д 189-90 Метод определения коксового остатка по Конрадсону

[4] ASTM Д 93-90 Метод определения температуры вспышки в закрытом тигле по Мартенс-Пенский

[5] ASTM Д 92-90 Метод определения температуры вспышки и воспламенения в открытом тигле по Кливленду

[6] ASTM Д 97-90 Метод определения температуры потери текучести нефтепродуктов

[7] ГОСТ Р 51069-97 Нефть и нефтепродукты. Метод определения плотности, относительной плотности и плотности в градусах API ареометром.

standartgost.ru

ГОСТ 10585-99. Топливо нефтяное. Мазут

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Технические условия

ГОСТ 10585-99

Oil fuel. Mazut.Specifications.

Дата введения 2001-01-01

Настоящий стандарт распространяется на мазут, получаемый из продуктов переработки нефти, газоконденсатного сырья и предназначенный для транспортных средств, стационарных котельных и технологических установок.

Обязательные требования к качеству продукции, обеспечивающие ее безопасность для жизни, здоровья и имущества населения, охраны окружающей среды, изложены в 4.3 и разделах 6 и 7.

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 12.1.005-88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.007-76 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 12.1.018-93 Система стандартов безопасности труда. Пожаровзрывобезопасность статического электричества. Общие требования

ГОСТ 12.1.044-89 (ИСО 4589-84) Система стандартов безопасности труда. Пожаровзрыво-опасность веществ и материалов. Номенклатура показателей и методы их определения

ГОСТ 12.4.011-89 Система стандартов безопасности труда. Средства защиты работающих. Общие требования и классификация

ГОСТ 12.4.021-75 Система стандартов безопасности труда. Системы вентиляционные. Общие требования

ГОСТ 12.4.034-85 Система стандартов безопасности труда. Средства индивидуальной защиты органов дыхания. Классификация и маркировка

ГОСТ 12.4.068-79 Система стандартов безопасности труда. Средства индивидуальной защиты дерматологические. Классификация и общие требования

ГОСТ 12.4.103-83 Система стандартов безопасности труда. Одежда специальная защитная, средства индивидуальной защиты ног и рук. Классификация

ГОСТ 12.4.111-82 Система стандартов безопасности труда. Костюмы мужские для защиты от нефти и нефтепродуктов. Технические условия

ГОСТ 12.4.112-82 Система стандартов безопасности труда. Костюмы женские для защиты от нефти и нефтепродуктов. Технические условия

ГОСТ 17.2.3.02-78 Охрана природы. Атмосфера. Правила установления допустимых выбросов вредных веществ промышленными предприятиями

ГОСТ 33-82 Нефтепродукты. Метод определения кинематической и расчет динамической вязкости

ГОСТ 1027-67 Свинец (II) уксуснокислый 3-водный. Технические условия

ГОСТ 1437-75 Нефтепродукты темные. Ускоренный метод определения серы

ГОСТ 1461-75 Нефть и нефтепродукты. Метод определения зольности

ГОСТ 1510-84 Нефть и нефтепродукты. Маркировка, упаковка, транспортирование и хранение

ГОСТ 1929-87 Нефтепродукты. Методы определения динамической вязкости на ротационном вискозиметре

ГОСТ 2477-65 Нефть и нефтепродукты. Метод определения содержания воды

ГОСТ 2517-85 Нефть и нефтепродукты. Методы отбора проб

ГОСТ 3118-77 Кислота соляная. Технические условия

ГОСТ 3877-88 Нефтепродукты. Метод определения серы сжиганием в калориметрической бомбе

ГОСТ 3900-85 Нефть и нефтепродукты. Методы определения плотности

ГОСТ 4328-77 Натрия гидроокись. Технические условия

ГОСТ 4333-87 Нефтепродукты. Методы определения температур вспышки и воспламенения в открытом тигле

ГОСТ 4517-87 Реактивы. Методы приготовления вспомогательных реактивов и растворов, применяемых при анализе

ГОСТ 6258-85 Нефтепродукты. Метод определения условной вязкости

ГОСТ 6307-75 Нефтепродукты. Метод определения наличия водорастворимых кислот и щелочей

ГОСТ 6356-75 Нефтепродукты. Метод определения температуры вспышки в закрытом тигле

ГОСТ 6370-83 Нефть, нефтепродукты и присадки. Метод определения механических примесей

ГОСТ 12026-76 Бумага фильтровальная лабораторная. Технические условия

ГОСТ 19433-88 Грузы опасные. Классификация и маркировка

ГОСТ 19932-74 Нефтепродукты. Метод определения коксуемости по Конрадсону

ГОСТ 20287-91 Нефтепродукты. Методы определения температур текучести и застывания

ГОСТ 21261-91 Нефтепродукты. Метод определения высшей теплоты сгорания и вычисление низшей теплоты сгорания

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 29227-91 Посуда лабораторная стеклянная. Часть 1. Пипетки градуированные. Общие требования

3.1 В зависимости от назначения, содержания серы и зольности устанавливаются следующие марки мазута:

Флотский Ф5 видов:
II ОКП 02 5213 0100
IV ОКП 02 5213 0102
Флотский Ф12 ОКП 02 5213 0101
Топочный 40 (ОКП 02 5211 0100) видов:
малозольный зольный
I ОКП 02 5211 0105 ОКП 02 5211 0101
II ОКП 02 5211 0106 ОКП 02 5211 0102
III ОКП 02 5211 0109 ОКП 02 5211 0113
IV ОКП 02 5211 0107 ОКП 02 5211 0103
V ОКП 02 5211 0111 ОКП 02 5211 0114
VI ОКП 02 5211 0112 ОКП 02 5211 0115
VII ОКП 02 5211 0108 ОКП 02 5211 0104
Топочный 100 (ОКП 02 5211 0200) видов:
малозольный зольный
I ОКП 02 5211 0205 ОКП 02 5211 0201
II ОКП 02 5211 0206 ОКП 02 5211 0202
III ОКП 02 5211 0209 ОКП 02 5211 0213
IV ОКП 02 5211 0207 ОКП 02 5211 0203
V ОКП 02 5211 0211 ОКП 02 5211 0214
VI ОКП 02 5211 0212 ОКП 02 5211 0215
VII ОКП 02 5211 0208 ОКП 02 5211 0204

3.2 В обозначение мазута должна входить марка и дополнительно:

для флотского мазута Ф5 — классификация по сере;

для топочных мазутов — классификация по сере, зольности и температуре застывания. Примеры обозначения:

— флотский мазут Ф12;— флотский мазут Ф5, II вида;— топочный мазут 100, IV вида, малозольный, с температурой застывания 25 °С.

3.3 Мазут марки Ф5 получают из продуктов прямой перегонки нефти с добавлением до 22 % керосино-газойлевых фракций каталитического или термического крекинга.

3.4 Разрешается добавлять в мазуты депрессорную присадку, допущенную к применению в установленном порядке. При поставке флотского мазута Ф5 ВМФ в паспорте указывают наличие депрессорной присадки.

4.1 Мазут должен изготовляться по технологии, утвержденной в установленном порядке.

4.2 Мазут марок Ф5 и Ф12 для Военно-Морского Флота России изготовляют по технологии, из сырья и компонентов, которые применялись при выработке образцов, прошедших испытания с положительными результатами и допущенных к применению в установленном порядке.

4.3 По физико-химическим показателям мазут должен соответствовать требованиям, указанным в таблице 1.

4.4 Упаковка, маркировка — по ГОСТ 1510.

Маркировка, характеризующая транспортную опасность мазута, по ГОСТ 19433: класс — 3, подкласс — 3.3, знак опасности — по черт. 3, классификационный шифр — 3313, номер ООН — 9933.

Таблица 1 Наименование показателя Значение для марки Метод испытания Ф5 Ф12 40 100
1 Вязкость при 50 °С, не более:
условная, градусы ВУ 5,0 12,0 По ГОСТ 6258
или
кинематическая, м2/с (сСт) 36,2·10-6(36,2) 89·10-6(89) По ГОСТ 33
2 Вязкость при 80 °С, не более:
условная, градусы ВУ 8,0 16,0 По ГОСТ 6258
или
кинематическая, м2/с (сСт) 59,0·10-6(59,0) 118·10-6(118,0) По ГОСТ 33
3 Вязкость при 100 °С, не более:
условная, градусы ВУ 6,8 По ГОСТ 6258
или
кинематическая, м2/с (сСт) 50,0·10-6(50,0) По ГОСТ 33
4 Динамическая вязкость при 0 °С, Па-с, не более 0,1·27 По ГОСТ 1929
5 Зольность, %, не более, для мазута: По ГОСТ 1461 или по приложению [1]
малозольного 0,04 0,05
зольного 0,05 0,10 0,12 0,14
6 Массовая доля механических примесей, %, не более 0,10 0,12 0,5 1,0 По ГОСТ 6370
7 Массовая доля воды, %, не более 0,3 0,3 1,0 1,0 По ГОСТ 2477 или по приложению [2]
8 Содержание водорастворимых кислот и щелочей Отсутствие По ГОСТ 6307
9 Массовая доля серы, %, не более, для мазута видов: По 7.3
I 0,5 0,5
II 1,0 0,6 1,0 1,0
III 1,5 1,5
IV 2,0 2,0 2,0
V 2,5 2,5
VI 3,0 3,0
VII 3,5 3,5
10 Коксуемость, %, не более 6,0 6,0 По ГОСТ 19932 или по приложению [3]
11 Содержание сероводорода Отсутствие По 7.2
12 Температура вспышки, °С, не ниже:
в закрытом тигле 80 90 По ГОСТ 6356 или по приложению [4]
в открытом тигле 90 110 По ГОСТ 4333 или по приложению [5]
13 Температура застывания, °С, не выше -5 -8 10 25 По ГОСТ 20287 или по приложению [6]
для мазута из высокопарафинистых нефтей 25 42
14 Теплота сгорания (низшая) в пересчете на сухое топливо (небраковочная), кДж/кг, не менее, для мазута видов: По ГОСТ 21261
I, II, III и IV 41454 41454 40740 40530
V, VI и VII 39900 39900
15 Плотность при 20 °С, кг/м3, не более 955 960 Не нормируется.Определение обязательно По ГОСТ 3900

Примечания:

1 В I и IV кварталах в мазутах марок 40 и 100 допускается температура вспышки в открытом тигле не ниже 65 °С, в закрытом тигле — не ниже 50 °С с указанием значения показателя в договорах и контрактах.

Такие мазуты не предназначены для судовых энергетических установок.

2 Мазуты марок 40 и 100,изготовленные из высокопарафинистых нефтей, не предназначены для судовых котельных установок.

3 Показатель 15 для мазута марок 40 и 100 определяется для осуществления приемо-сдаточных операций. При поставке мазутов Ф5, Ф12, 40 и 100 на экспорт показатель 15 определяется по [7] и не является браковочным.

4 В мазуте марок 40 и 100, вырабатываемом из газоконденсатного сырья, сероводород должен отсутствовать. Определение сероводорода — по 7.2.

5 Показатель 3 для топочного мазута марки 100 является небраковочным до 01.01.2003, а показатель 2 для топочного мазута марки 100 нормируется до 01.01.2003.

5.1 Мазут является малоопасным продуктом и по степени воздействия на организм человека относится к 4-му классу опасности в соответствии с ГОСТ 12.1.007.

5.2 Предельно допустимая концентрация паров углеводородов в воздухе рабочей зоны — 300 мг/м3 в соответствии с ГОСТ 12.1.005.

ПДК в воздухе рабочей зоны определяется хроматографическим или другим метрологически аттестованным методом. Для контроля концентрации паров углеводородов в воздухе рабочей зоны допускается использовать универсальный газовый анализатор УГ-2 или другой прибор аналогичного назначения.

Охрана атмосферы воздуха — по ГОСТ 17.2.3.02.

Содержание мазута в воде недопустимо и определяется визуально наличием масляной пленки на поверхности воды.

5.3 Мазут раздражает слизистую оболочку и кожу человека, вызывая ее поражение и возникновение кожных заболеваний.

Длительный контакт с мазутом увеличивает степень риска заболевания органов дыхания у человека.

5.4 Мазут не обладает способностью образовывать токсичные соединения в воздушной среде и сточных водах в присутствии других веществ или факторов при температуре окружающей среды.

5.5 В соответствии с ГОСТ 12.1.044 мазут представляет собой горючую жидкость с температурой самовоспламенения 350 °С, температурными пределами распространения пламени 91–155 °С. Взрывоопасная концентрация паров мазута в смеси с воздухом составляет: нижний предел — 1,4 %, верхний — 8 %.

5.6 При загорании мазута применяют следующие средства пожаротушения: углекислый газ, химическую пену, распыленную воду, порошок ПСБ-3; в помещениях — объемное тушение.

5.7 В помещениях для хранения и эксплуатации мазута запрещается обращение с огнем, электрооборудование, электрические сети и арматура искусственного освещения должны быть во взрывозащищенном исполнении.

Емкости для хранения и транспортирования мазута должны быть защищены от статического электричества в соответствии с ГОСТ 12.1.018.

При работе с мазутом не допускается использовать инструменты, дающие при ударе искру.

5.8 Помещения, в которых проводят работы с мазутом, должны быть снабжены обменной приточно-вытяжной вентиляцией с механическим побуждением, отвечающей требованиям ГОСТ 12.4.021.

В местах возможного выделения химических веществ в воздух рабочей зоны должны быть оборудованы местные вытяжные устройства.

В помещениях для хранения мазута не допускается хранить кислоты, баллоны с кислородом и другие окислители.

5.9 При разливе мазута необходимо собрать его в отдельную тару, место разлива промыть мыльным раствором или моющим средством, затем промыть горячей водой и протереть сухой ветошью.

При разливе на открытой площадке место разлива засыпать песком с последующим его удалением и обезвреживанием.

5.10 Оборудование, используемое в технологических процессах и операциях, связанных с производством, транспортированием и хранением данного продукта, должно быть герметичным.

При производстве, хранении и применении мазута не допускается попадание мазута в системы бытовой и ливневой канализации, а также в открытые водоемы.

5.11 При работе с мазутом применяют средства индивидуальной защиты по ГОСТ 12.4.011, ГОСТ 12.4.103, ГОСТ 12.4.111, ГОСТ 12.4.112, а также по типовым отраслевым нормам, утвержденным в установленном порядке.

В местах с концентрацией паров мазута, превышающей ПДК, применяют противогазы марок А, БКФ, шланговые противогазы марки ПШ-1 или аналогичные в соответствии с ГОСТ 12.4.034.

5.12 При попадании мазута на открытые участки тела необходимо его удалить и обильно промыть кожу водой с мылом или моющим средством; при попадании на слизистую оболочку глаз — обильно промыть теплой водой. Для защиты кожи рук применяют защитные рукавицы, мази и пасты — по ГОСТ 12.4.068.

5.13 Все работающие с мазутом должны проходить периодические медицинские осмотры в порядке, установленном органами здравоохранения.

6.1 Мазут принимают партиями. Партией считают любое количество мазута, изготовленного в ходе непрерывного технологического процесса, однородного по своим показателям качества и сопровождаемого одним документом о качестве.

6.2 При получении неудовлетворительных результатов испытаний хотя бы по одному показателю проводят повторные испытания вновь отобранной пробы из той же выборки. Результаты повторных испытаний распространяются на всю партию.

6.3 В мазутах марок 40 и 100 показатели 6, 8, 14 (см. таблицу) гарантирует изготовитель. Показатели 6 и 8 определяют периодически не реже одного раза в месяц, а показатель 14 — не реже одного раза в квартал.

При получении неудовлетворительных результатов периодических испытаний изготовитель переводит испытания по данному показателю в категорию приемо-сдаточных до получения удовлетворительных результатов не менее чем на трех партиях подряд.

7.1 Отбор проб мазута — по ГОСТ 2517. Для объединенной пробы берут 2,0 дм3.

7.2 Определение сероводорода

7.2.1 Аппаратура и реактивы

Воронка стеклянная по ГОСТ 25336.Пробирка стеклянная по ГОСТ 25336.Натрия гидроксид по ГОСТ 4328, раствор с массовой долей 2 %.Кислота соляная по ГОСТ 3118.Свинец уксуснокислый по ГОСТ 1027.Бумага фильтровальная по ГОСТ 12026.Термометр с ценой деления 1 °С и погрешностью измерения не более 0,5 °С по нормативной документации.Секундомер любого типа с погрешностью измерения не более 0,2 с.Пипетка по ГОСТ 29227.Водяная баня любого типа, обеспечивающая погружение пробирки на 20 мм ниже уровня нефтепродукта.

7.2.2 Проведение испытания

В делительную воронку вместимостью 100 см3 наливают 10 см3 мазута и 10 см3 раствора гидроксида натрия, тщательно взбалтывают содержимое воронки в течение 5–10 мин. После отстоя сливают из воронки через кран 3–5 см3 водного слоя в стеклянную пробирку диаметром 15–20 мм и приливают в пробирку 0,4–0,6 см3 соляной кислоты.

Пробирку помещают в водяную баню, которую нагревают до 25 °С при постоянном взбалтывании содержимого пробирки. Одновременно с началом нагревания в верхнюю часть пробирки помещают индикаторную бумагу, пропитанную раствором уксуснокислого свинца, приготовленную по ГОСТ 4517. Индикаторную бумагу во время испытания поддерживают во влажном состоянии, смачивая ее водой из пипетки.

Изменение окраски индикаторной бумаги от светло-коричневой до темно-коричневой указывает на присутствие сероводорода в мазуте.

7.3 Определение серы

7.3.1 Массовую долю серы для мазута всех марок определяют по ГОСТ 1437 или ГОСТ 3877, при разногласиях в оценке качества мазута определение проводят по ГОСТ 3877.

8.1 Транспортирование и хранение — по ГОСТ 1510.

9.1 Изготовитель гарантирует соответствие качества мазута требованиям настоящего стандарта при соблюдении условий транспортирования и хранения 5 лет со дня изготовления.

ПРИЛОЖЕНИЕ А

(рекомендуемое)

Библиография

[1] ASTM Д 482-90 Метод определения золы в нефтепродуктах

[2] ASTM Д 95-90 Метод определения содержания воды в нефтепродуктах и битуминозных материалах

[3] ASTM Д 189-90 Метод определения коксового остатка по Конрадсону

[4] ASTM Д 93-90 Метод определения температуры вспышки в закрытом тигле по Мартене-Пенский

[5] ASTM Д 92-90 Метод определения температуры вспышки и воспламенения в открытом тигле поКливленду

[6] ASTM Д 97-90 Метод определения температуры потери текучести нефтепродуктов

[7] ГОСТ Р 51069-97 Нефть и нефтепродукты. Метод определения плотности, относительной плотности и плотности в градусах API ареометром.

УДК 662.753.325 : 006.354 МКС 75.160.20 Б 15 ОКП 02 5210

Ключевые слова: топливо, мазут, условная вязкость, динамическая вязкость, зольность, механические примеси, водорастворимые кислоты и щелочи, сера, коксуемость, сероводород, температура вспышки, температура застывания, теплота сгорания, плотность

По материалам издания «ТОПЛИВО НЕФТЯНОЕ. МАЗУТ. Технические условия. Издание официальное.»ФГУП «Стандартинформ», Москва, 2005 г.

www.otkspb.ru


Смотрите также