Справочник химика 21. Каучук бензин


Резина и каучук — чем они отличаются

Эластичные материалы знакомы человеку с давних времен. Они тогда применялись преимущественно в бытовых целях. Сегодня без резины и каучука трудно представить  развитие промышленности, транспорта и строительства  и связи, повседневную жизнь людей.

Что появилось раньше

Еще до того, как Америку открыли европейцы, индейцы, жившие там, пользовались каучуком. Его получали из сока тропической гевеи. Высушенный сок коптили, получая непромокаемый и упругий материал. Он шел на изготовление емкостей для воды, игрушек, предметов культа. Из него делали примитивную обувь и одежду.

В середине XVIII века каучук путешественники привезли в Европу. Однако долго не могли найти способ его применения. За исключением стирающих карандаш ластиков. Считалось, что из-за его высыхания и затвердевания он не имеет перспектив практического применения. В следующем веке появились непромокаемые ткани, сумки и галоши, которые твердели в холодную погоду и становились мягкими в тепле.

Через сотню лет после появления каучука в Старом Свете был придуман способ, позволивший сделать эластичность этого материала устойчивой. Он получил название вулканизации. Его суть в смешивании сырого каучука с серой и дальнейшим разогревом этой смеси. Получившийся продукт стали называть резиной. Она начала широко использоваться в качестве уплотнителя и электроизолятора. В начале ХХ века в связи с ростом потребности в резине была решена проблема производства синтетических каучуков в промышленно развитых странах.

Куда идет латекс

Натуральный каучук добывают из каучуконосных деревьев, которые растут в тропических лесах или на специальных плантациях. Такое дерево начинает давать сок через семь лет. Для этого на нем ножом делается спиралевидное углубление, по которому в емкость попадает вытекающий сок белого цвета, называемый латексом. Спустя несколько часов набирается примерно полторы сотни граммов. После загустевания и высыхания образуются комочки натурального каучука. Такую процедуру можно проводить раз в два дня.

Каучуковое дерево

Всего в мире натуральный каучук достигает 40% в общем производстве и потреблении всех видов каучуков. Это примерно 9 млн. тонн.

Необработанный каучук растворяется в бензине, образуя каучуковый клей, и других органических растворителях. После вулканизации он только набухает, а не растворяется.

Кроме бензина он растворяется в бензоле, хлороформе, сероуглероде и других углеводородах. Он практически не растворяется и не набухает  в спирте, воде и ацетоне.

Свыше половины натурального каучука идет на производство автошин. В странах Юго-Восточной Азии (Вьетнам, Индонезия, Малайзия и Таиланд)  организовано крупномасштабное его производство.

Как делают резину

Оба эластичных материала неразрывно связаны. Резину получают из натурального или синтетического каучука в результате  вулканизации. Добавляется наполнитель, которым чаще всего является сажа. Нагретый до 130-160 градусов каучук начинает взаимодействовать с серой. Во время этого технологического процесса молекулы каучука сшиваются в единую сетку с помощью атомов серы. Это резко повышает его эластичность и твердость, прочностные качества. Регулируется набухаемость и растворимость органическими растворителями.

Резина

Помимо серы для вулканизации применяются оксиды металлов, соединения аминного типа, убыстряющие процесс катализаторы, и другие химические компоненты. Они обеспечивают нужную пластичность, свойства против старения и другие эксплуатационные качества. В результате каучук превращается в резину. В зависимости от содержания серы образуется материал разной степени упругости.  Самой мягкой получается резина с минимальным содержанием серы, а самой твердой та, в которой она составляет треть и более.

Производство резины

При изготовлении резины ей задаются определенные качества для производства изделий из нее:

  • Кислотостойкость.
  • устойчивость в агрессивных средах.
  • Маслобензостойкость.
  • устойчивость против высоких и низких температур.
  • Озоностойкость.
  • Электропроводимость и пр.

Резина широко применяется для изготовления шин для транспортных средств, различных шлангов и уплотнителей, лент транспортеров, бытовых, гигиенических и медицинских товаров.

В чем сходство и разница

Резина и каучук схожи, прежде всего, своей эластичностью и тем, что они могут перерабатываться. Их отличия существеннее.

Сырой каучук:

  1. Не пригоден для промышленного производства. В мире применяют не более 1% добываемого натурального каучука. В основном в виде резинового клея.
  2. У него низкая прочность, и высокая липучесть, которая сильно проявляется при высокой температуре. На морозе он твердеет и ломается. Полезные качества он приобретает только после вулканизации.
  3. При комнатной температуре начинается его старение, следствием которого становится потеря прочности и эластичности.
  4. Когда температура поднимается до 200 градусов, он разлагается с образованием низкомолекулярных углеводородов.
  5. Растворяется органическими растворителями типа бензина.
  6. Служит сырьем для производства резины.

Резина, полученная в результате вулканизации каучуков, служит для массового производства многих тысяч наименований различных изделий.

Из нее изготавливают:

  1. Шины для транспортных средств и авиационной техники.
  2. Разнообразные уплотнители, применяемые в промышленности и строительстве, различных видах техники.
  3. Электроизоляционные материалы.
  4. Приводные ремни, рукава для подачи жидкостей.
  5. Напольные покрытия и изолирующие пластины.
  6. Резиновую обувь и водоустойчивую одежду.
  7. Средства защиты от химического, радиационного и бактериологического воздействия (костюмы, перчатки, сапоги и пр.).
  8. Изделия медицинской техники и гигиены.
  9. Фурнитуру для одежды и пр.

vchemraznica.ru

Растворители каучуков - Справочник химика 21

    Жидкие уретановые каучуки применяют для изготовления изделий методами свободной заливки, вакуумного и центробежного литья, а также в качестве основы при получении клеев, герметизирующих и антикоррозионных составов. Изделия и покрытия на основе жидких полиуретанов отличаются эластичностью, стойкостью к действию кислорода и озона, хорошим сопротивлением удару, истиранию и набуханию в растворителях. Каучуки на основе простых полиэфиров более водостойки, чем сложноэфирные жидкие уретановые каучуки. [c.389]

    Очищенные продукты представляют собой белые порошки, в расплавленном же состоянии они приобретают янтарную окраску. Они растворимы в растворителях каучука (бензоле, хлороформе, четыреххлористом углероде, сероуглероде, бензине и скипидаре), их растворы концентрацией до 25% получаются легко. Температуры размягчения и плавления в зависимости от метода приготовления колеблются в пределах от комнатной температуры до 280°. [c.214]

    Бензины-растворители для резиновой промышленности должны отвечать следующим условиям быть удовлетворительными растворителями каучука быть устойчивыми к воздействию кислорода, влаги и хлористой серы (для смесей, затвердевающих на холоде) быть нетоксичными и не иметь неприятного запаха иметь безопасную температуру вспышки и надлежащую скорость испарения. [c.563]

    Назначение растворителя заключается в обеспечении жидкой реакционной среды, что облегчает в процессе полимеризации регулирование температуры, диффузию мономера, перемешивание и выгрузку полимера. Образующийся полимер растворяется в реакционной среде ио мере его образования. Реакцию заканчивают, когда содержание полимера в реакционной массе достигнет 25%. Но окончании полимеризации производят дезактивирование и удаление катализатора. После этого отгоняют избыток мономера и растворитель, каучук сушат и упаковывают. Растворитель регенерируют и используют повторно. [c.38]

    Термопрены растворимы в растворителях каучука. Вязкость растворов термопрена значительно ниже вязкости растворов исходного каучука, что указывает на понижение молекулярного веса иод действием сульфокислот. Термопрены способны вулканизоваться серой, как и исходный каучук, присоединяют галоиды и галоидоводороды. [c.61]

    Резиновый клей получают обычно растворением каучука или резиновой смеси в соответствующем растворителе. Каучуки, как и все другие высокомолекулярные соединения, растворяются после предварительного набухания в растворителе, которое сопровождается увеличением объема каучука. В первый момент действия растворителя набухание происходит с наибольщей скоростью, затем скорость набухания постепенно уменьщается. При набухании растворитель проникает в пространство между молекулами каучука, поэтому межмолекулярные силы взаимодействия в каучуке по мере набухания ослабевают силы сцепления между молекулами каучука оказываются настолько ослабленными, что каучук переходит в раствор. [c.317]

    ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К РАСТВОРИТЕЛЯМ КАУЧУКА [c.318]

    Паронит (ГОСТ 481) — основной прокладочный материал для фланцевых соединений, работающих в районах с умеренным, тропическим и холодным климатом с t до -60 °С. Его изготавливают из смеси асбестовых волокон, растворителя, каучука и наполнителей. Для условий тропического климата в смеси добавляются фунгициды. Паронит выпускают следующих марок (табл. 3.1.8.1) ГОН, ПОН-А, ПОН-Б и ПОН-В (паронит общего назначения), ПМБ и ПМБ-1 (паронит масло-бензостойкий), ПА (паронит, армированный сеткой) и ПК (паронит кислотостойкий). Паронит для уплотнения неподвижных фланцевых соединений типа гладкий , шип-паз , выступ-впадина , марок ПОН, ПОН-Б, ПМБ, ПМБ-Т выпускают в листах (табл. 3.1.8.2) и в виде готовых прокладок на фланцы соответствующего сортамента [c.874]

    К растворителям каучука в производстве резиновых изделий предъявляют следующие требования 1) хорошая растворяющая способность 2) стабильность, отсутствие химического взаимодействия с каучуком и отрицательного влияния на качество клея  [c.318]

    Растворители каучука представляют собой, как правило, легко испаряющиеся и воспламеняющиеся жидкости поэтому в помещении клеевой необходимо соблюдать следующие правила пожарной безопасности  [c.328]

    Пропилен — также газообразный углеводород. Его формула СНг = СН — СНз. Его получают в больших количествах пиролизом пропана. Пропилен широко используют для получения полимеров, растворителей, каучуков и других веществ. [c.90]

    Растворители каучука (бензин, этилацетат, амилацетат, скипидар и др.) применяются главным образом для изготовления клеев, употребляемых в процессах сборки резиновых изделий и для промазки резиновых тканей. Наиболее широко применяется и наименее токсичен бензин марки Галоша (плотность, не более 0,73 г см , температура начала перегонки не ниже 80 X). Бензин Галоша используется для изготовления клеев из изопреновых (синтетических и натурального), бутадиеновых, бутадиен-стирольных и бутадиен-метилстирольных каучуков. Кроме того, бензин применяется для увеличения клейкости поверхностей склеиваемых или стыкуемых резиновых, резино-тканевых и резино-металлических деталей при сборке (конфекции). [c.503]

    Одновременно с распадом поперечных связей происходит деструкция макромолекул каучука, к-рая сопровождается возникновением новых межмолекулярных и др. связей, что приводит к частичному восстановлению пространственных и образованию разветвленных структур. Поэтому входящий в состав регенерата углеводород каучука содержит гель- и золь-фракции. Гель-фракция, сохраняющая часть неразрушенных поперечных связей, ограниченно набухает в обычных растворителях каучука и повышает показатель эластич. восстановления регенерата, что ухудшает его технологич. свойства. Частицы золь-фракции имеют меньшую мол. массу и менее вытянутую форму, чем частицы исходного каучука, что отрицательно сказывается на механич. свойствах регенерата. [c.149]

    Четыреххлористый углерод ССЦ. Тяжелая бесцветная жидкость с характерным запахом. Широко применяется на химических производствах в качестве растворителя каучука, жира, лаков и т. д. Перед другими органическими растворителями имеет то преимущество, чго он не горюч. Пары ССи ядовиты. [c.285]

    Антропогенные источники поступления в окружающую среду. Выделяется из нефтепродуктов, моторных топлив, смазочных масел, растворителей, каучука, резин, из некоторых синтетических материалов (покрытий). [c.40]

    Применение. Растворитель каучука, восков, битумов. Сырье в синтезе некоторых мономеров промежуточный продукт в производстве капролактама. [c.82]

    Первый циклический природный каучук был получен п 19JО г. Гар-риесом при обработке паракаучука концентрированной epnoii кислотой при обычной температуре. При этом был получен аморфный порошок, ПС растворимый в обычных растворителях каучука и отличавшийся большей предельностью, чем исходный паракаучук. На основании присоединения брома Кирхгоф показал, что сернокислотные каучуки , вероятно, сохраняют всего часть ненредельпости исходного ] аучука. [c.213]

    К растворителям, вырабатываемым нефтяной промышленностью, относятся бензины БР-1 ( Галоша ), растворитель для лакокрасоч-11011 промглшленности (уайт-спирит) и экстракционный, а также петролейный эфир и бензол. Бензин БР-1 применяется в резиновой промышленности в качестве растворителя каучука для приготовления резинового клея. Он отличается узким фракционным составом и ограниченным (не более 3 вес. %) содержанием ароматических углеводородов. Уайт-спирит служит растворителем в лако-красочном [c.135]

    Разделение изомерных ксилолов довольно гложно и осуществляется только с помощью специальных методов. Поэтому для технических целей обычно применяют смесь изомеров. Аминопроизводные ксилолов используются для получения красителей, сами углеводороды применяются для приготовления лаков и в качестве растворителей каучука из ж-кси-лола получают ксилольный мускус (см. ниже). [c.488]

    Четыреххлористый углерод (тетрахлорметан) I4. Бесцветная жидкость с характерным запахом. Темп. кип. 76,5° С, темп, плавл. —23° С, 1,594. Не растворим в воде. Очень хороший растворитель каучука, жиров, масел, смол и других веществ. Применяется как средство для выведения пятен с тканей. Так как тетрахлорметан негорюч, его используют в специальных огнетушителях для гашения пламени в тех случаях, когда применение обычных щелочнокислотных огнетушителей может вызвать порчу ценной аппаратуры, приборов и т. п. В технике четыреххлорнстый углерод получают из сероуглерода действием хлора [c.97]

    Во второй половине ХУП1 столетия были найдены растворители каучука и затем было предложено применение растворов каучука для пропитки тканей и изготовления других каучуковых изделий. В 1823 г. в Англии было организовано производство водонепроницаемой ткани для плащей путем пропитки ее раствором каучука в продуктах сухой перегонки каменного угля (в сольвент-нафте). Несколько позднее, в 1832 г., подобное производство было организовано в Петербурге. [c.15]

    Хлорирование натурального каучука производится путем пропускания хлора через раствор каучука илн взаимодействием набухшего в растворителе каучука с хлором. Хлорирование происходит с образованием ряда промежуточных продуктов. Конечный продукт хлорирования представляет собой высокомолекулярное соединение состава (С5НбС14) , называемое х л о р к а у- [c.59]

    Мокрое смешение. На первой стадии процесса в смесителе готовят вязкую тестообразную смесь на основе асбеста, наполнителей, жидких связующих и растворителей. Каучук перед введением пластицируют на валковой краскотерке, а затем растворяют. Полученную гомогенную смесь выдавливают через головку экструдера, ширина П1,ели которой соответствует размерам накладки, — в результате иолучают плотную иепрерывиую лепту, которую разрезают на полосы иужиой длины, я растворитель удаляют ири сушке лент в печи. Сушку ведут в течение нескольких часов при 50— 90°С смола в это время подвергается частичному отверждению, а затем формованию. Этот метод можно изменить, уплотняя смесь [c.245]

    Свойства. Сырой каучук окрашен в цвета от желтого до коричневого, плотность 0,94 г/см1 Не растворим в воде, растворим в жидких углеводородах и их хлорпроизводных. Резина отличается от каучука повышенной эластичностью, более высокой плотностью и иабухаемостью в органических растворителях. Каучуки и резины стареют , т. е. теряют прочность и эластичность, но приобретают липкость и хрупкость при действии света, теплоты и кислорода воздуха для предотвращения потери полезных свойств в состав каучуков и резин вводят противостарители (аминосоедипения, спирты и фенолы). [c.584]

    Известны следующие сорта Б. р. бензин Галоша , уайтспирит, бензин экстракционный и бензин для промышленно-технических целей. Бензин Галоша применяется в резиновой пром-сти как растворитель каучука при приготовлении клея. Уайт-спирит слуншт растворителем в лакокрасочном производстве, заменяя частично скипидар. Бензин экстракционный применяется для извлечения масла из семян и жмыхов в маслобойной пром-сти и в других производствах. [c.70]

    Сама нефть и ее фракции хорошо растворяют серу и сернистые соединения, йод, различные смолы, а таюте растительные и животные жиры, не содержащие оксикислот. На этом свойстве основано нримепение бензинов как растворителей каучука (при приготовле- [c.86]

    Хлор применяют как отбеливающее средство в текстильной и бумажной промышленности для стерилизации питьевой воды и обеззараживания сточных вод как исходное сырье для получения синтетического хлороводорода, соляной кислоты, хлорной извести, хлоридов, хлоратов, гипохлоритов для извлечения олова из отходов белой жести дли получения различных органических хлорпроизводных пластмасс, синтетических волокон, растворителей, каучуков, заменителей кожи (павинол), средств защиты растений (гексахлорана, хлорофоса) дефолиантов, дезинфицирующих средств, лекарств, ядохимикатов в анилипокрасочной промышленности в цветной металлургии для хлорирования руд с целью извлечения некоторых металлов (титана, ниобия, циркония) при получении и очистке многих металлов. [c.429]

    В связи с тем, что у этилен-пропиленового каучука практически отсутствуют двойные связи, изготовленные из него резины обладают высокой стойкостью к различным видам старения к действию окислителей, щелочей, кислот и других химических реагентов. Так, свойства резин из этилен-пропиленового каучука не изменяются после пребывания в течение 15 суток при 25° С в 75- и 96°/о-ных растворах серной кислоты и в 30%-ной азотной кислоте. При 75° С эти резины неустойчивы только к действию 96%-ной Н2504. По озоностойкости вулканизаты этилен-пропиленового каучука превосходят вулканизаты НК, бутадиен-стирольиого каучука, неопрена, бутилкаучука и уступают лишь вулканизатам на основе хайпалона. Этилен-пропиленовый каучук, однако, не обладает маслостойкостью и сильно набухает в обычных растворителях каучуков [c.251]

    Хлорирование натурального каучука производится путем пропускания хлора через раствор каучука или взаимодействием набухшего в растворителе каучука с хлором. Хлорирование происходит с образованием ряда промежуточных продуктов. Конечный продукт хлорирования представляет собой высокомолекулярное соединение состава (С5Н5С14) , называемое х л о р к а у-ч у к о м. Это насыщенный продукт, образующийся в результате присоединения хлора и замещения хлором водорода. Хлоркау-чук растворим во всех растворителях натурального каучука за исключением бензина. Растворы его обладают почти такой же вязкостью, как н растворы исходного каучука, следовательно, хлорирование не вызывает заметного разрыва молекулярных [c.59]

chem21.info

Влияние агрессивных сред на каучуки и резины

Влияние агрессивных сред на каучуки

Действие галогенов

В процессе контакта натурального каучука с галогенами наряду с присоединением галогена по средствам двойной связи начинается процесс замены водорода с образованием хлористого водорода.

Хлорирование натурального каучука осуществляется путем пропускания хлора по раствору каучука в четыреххлористом углероде или при контакте каучука с хлором под давлением. Хлорирование происходит после образования ряда промежуточных продуктов. Итоговый продукт хлорирования в четыреххлористом углероде является высокомолекулярным соединением циклической структуры, называемое хлоркаучуком. Этот насыщенный продукт является результатом присоединения хлора, замещения хлором водорода и циклизации.

Хлоркаучук легко растворяем во всех растворителях натурального каучука, за исключением бензина. Растворы его имеют почти такую же вязкость, как и растворы первоночального каучука, следовательно, хлорирование не приводит к заметному разрыву макромолекул и снижению молекулярной массы. Обычно хлоркаучук полу¬чают как в виде белого порошка так и прозрачных пленок. При температуре близкой к 70 °С он размягчается, переходя в мягкое и эластичное состояние, при 180—200 °С разлагается с образованием хлора.

Являясь насыщенным соединением, хлоркаучук обладает относительно высокой химической стойкостью: он устойчив к влиянию кислот, солей и щелочей. Он используется в процессе изготовления различных красок, антикоррозионных покрытий и огнеупоров, а также является основой композиции для крепления элементов из резины к металлическим поверхностям.

Хлорирование синтетических бутадиенового и бутадиенстирольного каучуков в растворе четыреххлористого углерода проте­кает в основном по двойным связям и сопровождается сшиванием макромолекул; циклизации при этом почти не наблюдается. Про­дукты частичного хлорирования этих каучуков, содержащие до 35% хлора, способны вулканизоваться серой и оксидами металлов с образованием ненаполненных вулканизатов с прочностью при растяжении до 13 МПа (130 кгс/см2). Предельное содержание хло­ра в продуктах хлорирования бутадиен-стирольного каучука со­ставляет 53%, а в продуктах хлорирования бутадиенового каучука 65—71%. Эти продукты отличаются высокой химической стой­костью.

Хлорированием наирита в дихлорэтане или хлороформе полу­чают хлорнаирит с содержанием 68% хлора, что соответствует фор­муле (C4H5CI3)п. Хлорнаирит применяется для изготовления клеев, используемых для крепления резины к металлам в процессе вулка­низации резино-металлических изделий.

При взаимодействии натурального каучука с бромом на холоду происходит присоединение брома по месту двойной связи с обра­зованием дибромида каучука — высокомолекулярного соединения состава (С5Н8Вr2)n. Эта реакция на практике применяется для количественного определения каучука в смесях с другими вещест­вами. Дибромид сравнительно неустойчив, при температуре выше 60 °С наступает его разложение.

При взаимодействии натурального каучука с иодом и фтором происходит одновременно окисление каучука. Только в особых ус­ловиях удается получить высокомолекулярные продукты взаимо­действия с иодом и фтором, аналогичные дибромиду.

Действие серной кислоты и сульфатов

При действии на натуральный каучук серной кислоты и сульфокислот образуются так называемые термопрены. В зависимости от условий получения, от количества взятой кислоты могут полу­чаться термопрены разной твердости. Все термопрены термопла­стичны, т. е. способны размягчаться при нагревании.

Некоторые термопрены в виде клея применяют для крепления резины к по­верхности металла и дерева, при обкладке поверхности металли­ческой аппаратуры (гуммировании).

В химическом процессе получения термопрена пользуется нелетучие и более равномерно распределяемые в каучуке сульфокисло­ты. Этот процесс осуществляется  смешением n-Толуолсульфокислоты в количестве 8—9% с изопреновым каучуком на каландрах, и дальнейшего разогрева полученной смеси до температуры близкой к 140 °С в течение 3нескольких часов. После окончания термо обработки полученную смесь промывают на вальцах,  тем самым удаляя кислоты с дальнейшей сушкой полученного вещества.

При образовании термопренов происходит циклизация каучука в результате взаимодействия соседних двойных связей. Состав термопрена приближается к формуле (C5H8)n, что указывает на то, что кислота не присоединяется к каучуку, а вызывает лишь изменение его молекулярной структуры, при этом количество двойных связей в молекулах уменьшается почти в 2—2,5 раза.

Термопрены растворимы в тех же растворителях, что и каучук.

Вязкость растворов термопрена значительно ниже вязкости растворов исходного каучука, что указывает на снижение молекулярной массы под действием сульфокислот. Термопрены способны вул­канизоваться серой, как и исходный каучук, присоединяют гало­гены и галогеноводороды.

Синтетический цис- 1,4-полиизопрен взаимодействует с сульфокислотами, при этом происходит циклизация с образованием про­дуктов, которые имеют строение, аналогичное строению продуктов взаимодействия натурального каучука с сульфокислотами.

Окисление каучуков

Окисление — основная причина старения каучуков и резины, в результате которого ухудшаются их физико-механические и технологические свойства. Взаимодействие каучука с кислородом имеет весьма существенное значение при проведении ряда технологиче­ских процессов, таких как пластикация, вулканизация и регенера­ция, приводящих к изменению свойств каучука.

Продуктами окисления каучуков являются как летучие, так и нелетучие соединения. В смеси легколетучих продуктов реакции окисления натурального каучука обнаружены: двуокись углерода, вода и водород, перекись водорода, формальдегид. В летучих продуктах окисле­ния— бутадиенового каучука — вода, формальдегид, муравьиная кислота.

В продуктах окисления нелетучей природы кисло­род содержится в функциональных группах.

При окислении каучуки могут поглощать значительное количество кислорода. Стало известно, что натуральный каучук в процессе окисления поглощает до 30% кислорода.

Натуральный каучук используемый для технических нужд  при комнатной температуре окисляется относительно медленно благодаря присутствию в его составе противостарителей естественной природы. В процессе экстрагировании каучука ацетоном из него вымываются смолы, и естественные противостарители; поэтому экстрагированный и чистый каучуки, лишенные примесей белков и смол, окисляются легче. В начале реакции окисления натуральный каучук характеризуется относительной липкостью, после реакции присоединения 0,5— 1,0% кислорода вся масса каучука размягчается. При дальнейшем окислении и поглощения каучуком 12—25% кислорода, он становится твердым и увеличивается его хрупкость, его поверхность покрывается трещинами.

Из экспериментов известно, что поглощение небольшого количества кислорода приводит к резким изменениям свойств каучука: снижению прочности при растяжении, средней молекулярной массы, вязкости его растворов, повышается его растворимость в растворителях и пластичность. При присоеди­нении 0,5% кислорода прочность при растяжении пленки каучука, приготовленной из латекса, понижается на 50%.

Изменение свойств натрийбутадиенового каучука в процессе окисле­нии имеет другой характер: увеличивается прочность при растяже­нии и жесткость, снижается растворимость.

Вследствие способности легко окисляться каучуки могут применяться только после стабилизации их добавками противостарителей.

Способность каучуков к окислению различна и зависит от их молекулярной массы и структуры: разветвленности молекул, чис­ла двойных связей в основной цепи, наличия полярных замести- , телей, их положения и природы. Так, от хлоропренового каучука, содержащего хлор в качестве полярного заместителя, под дей­ствием кислорода отщепляется хлористый водород. Наличие метильных групп, находящихся в a-положении к двойной связи, способствует окислению в большей степени, чем наличие таких заместителей, как фенильная или нитрильная группы, хлор.

На окисление каучуков оказывает значительное влияние разветвленность макромолекул. Чем больше разветвленность, тем легче развиваются окислительные процессы, вероятно, вследствие большей реакционной способности третичных атомов углерода.

Окисление всех каучуков ускоряется при нагревании, под дей­ствием света, статических и динамических нагрузок, при воздей­ствии солей металлов переменной валентности (Сu, Fe, Мn, Со). Значительное влияние на окисление оказывают различные химиче­ские реагенты и примеси, которые либо тормозят (ингибируют), либо ускоряют (инициируют) процесс окисления. В реальных усло­виях происходит одновременное воздействие нескольких из пере­численных факторов, ускоряющих окислительные процессы. Од­нако действие этих факторов, как правило, не аддитивно.

Механизм окисления каучуков. В соответствии с перекисной теорией окисления, предложенной академиком А. Н. Бахом, моле­кула кислорода присоединяется к окисляемому веществу, не раз­рываясь на отдельные атомы; в результате в качестве первичных продуктов окисления органического вещества образуются перекиси а гидроперекиси, которые легко распадаются.

Установлено, что кислород присоединяется в основном к метиленовым группам, находящимся в a-положении по отношению к двойным связям, с образованием гидроперекисей.

Боковые радикалы представляют собой, как правило, углеводородные цепи, состоящие из большого числа изопреновых групп; по­этому длина образующихся при распаде новых молекул достаточно велика. Распад молекул каучука с образованием высокомоле­кулярных продуктов называется окислительной деструкцией. Окис­лительной деструкцией, происходящей на первоначальной стадии окисления натурального каучука, объясняется понижение молеку­лярной массы, прочности и эластичности, а также повышение пла­стичности, растворимости и снижение вязкости растворов этого каучука.

Интенсивность деструкции каучука в результате его окисления зависит от температуры. Так, при 100 °С на 5—10 атомов прореагировавшего кислорода приходится один разрыв молекуляр­ной цепи.

Чем глубже идет процесс окисления, тем значительнее деструк­ция молекул каучука. При глубоком окислении в результате присоединения больших количеств кислорода образуются низкомоле­кулярные продукты деструкции, содержащие карбонильные и кар­боксильные группы, например левулиновый альдегид.

Установлено, что при окислении каучуков одновременно с деструкцией происходит и структурирование. Соотношение скоростей деструкции и структурирования зависит от структуры каучука и условий процесса окисления. Уменьшение концентрации кислорода ведет к уменьшению скорости деструкции натурального каучука и к повышению скорости его структурирования. При нагревании в вакууме натуральный каучук, весьма склонный к деструкции, под­вергается структурированию. При окислении бутадиенового кау­чука, наоборот, с уменьшением концентрации кислорода скорость структурирования понижается.

Методы исследования, применяемые в настоящее время, дают возможность определить только, какой процесс преобладает, а так­же оценить суммарный эффект изменения структуры каучука под влиянием одновременно протекающих процессов.

Натрийбутадиеновый каучук, содержащий бутадиеновые звенья в положении 1,2, по скорости структурирования значительно превосходит натуральный каучук. Это, в частности, объясняется тем, что при нагревании его развивается процесс термического структурирования, который особенно интенсивно протекает при наличии значительного числа боковых винильных групп.

Наблюдаемое при окислении натрийбутадиенового каучука повышение жесткости и прочности, рост условных напряжений при заданном удлинении, понижение относительного удлинения  и растворимо­сти свидетельствуют о преобладании при окислении этого каучука процесса структурирования, являющегося результатом соединения цепных молекул в пространственную сетку силами химических свя­зей, и за счет усиления межмолекулярного взаимодействия, вы­званного появлением новых полярных групп (карбонильных, карбоксильных).

цыс-1,4-Бутадиеновый каучук, содержащий всего 2—5% звеньев в положении 1,2, обладает значительно более высокой стойкостью к окислению по сравнению с натрийбутадиеновым каучуком.

По стойкости к окислению ненасыщенные каучуки располагают­ся в ряд: бутилкаучук > бутадиен-нитрильный > хлоропреновый > бутадиен-стирольный > бутадиеновый > изопреновый.

Соединения металлов переменной валентности (Fe, Со, Мn, Сu) каталитически ускоряют процесс окисления каучуков. Особенно активны соли жирных и смоляных кислот, растворимые в каучу­ках. Так, их каталитическое действие на окисление натурального каучука проявляется при содержании 0,1—0,01%.

Некоторые химические реагенты являются ингибиторами окис­ления. Они тормозят процесс окисления, уменьшая скорость окис­ления каучука в десятки и сотни тысяч раз по сравнению со ско­ростью автокаталитического окисления. Вещества, специально при­меняемые для торможения окисления и старения каучука, носят название противостарителей. Ингибирующее действие оказывают и некоторые другие компоненты резиновых смесей.

Действие озона

При действии озона на каучуки образуются озониды; при этом увеличивается масса каучуков и на их поверхности (за исключе­нием натурального и бутилкаучука) образуется хрупкая пленка. Особенно эффективно действие озона на каучук, находящийся под действием растягивающей нагрузки. В этих условиях наступает так называемое озонное растрескивание, поверхность деформиро­ванного образца покрывается трещинами. С увеличением нагрузки озонное растрескивание увеличивается. Окисление кислородом спо­собствует озонному растрескиванию.

Стойкость каучуков к действию озона не одинакова: особенно сильно озон действует на натуральный, бутадиеновый и бутадиен- стирольный каучуки.

Хлоропреновый и бутилкаучук отличаются повышенной стойкостью к действию озона; резины из других кау­чуков требуют специальных мер защиты. Повышенная стойкость бутилкаучука к озону объясняется малой ненасыщенностью, а по­вышенная стойкость хлоропренового каучука — наличием в его мо­лекулах хлора.

К списку

domrezin.ru

Резина и каучуки. Классификация. Свойства.

Обычно в качестве таких веществ применяют серу и селен, для некоторых каучуков перекиси. Для резины электротехнического назначения вместо элементарной серы (которая взаимодействует с медью) применяют органические сернистые соединения. Ускорители процесса вулканизации; полисульфиды, оксиды свинца, магния и другие влияют как на режим вулканизации, так и на физико-механические свойства вулканизатов. Ускорители проявляют свою наибольшую активность в присутствии оксидов некоторых металлов, называемых поэтому в составе резиновой смеси активаторами.

  • Противостарители (антиоксиданты) замедляют процесс старения резины,который ведет к ухудшению ее эксплуатационных свойств.

Существуют противостарители химического и физического действия. Действие первыхзаключается в том, что они задерживают окисление каучука в результате окисления их самих или за счет разрушения образующихся перекисей каучука. Физические Противостарители образуют поверхностные защитные пленки, они применяются реже.

  • Мягчители (пластификаторы) облегчают переработку резиновой смеси,увеличивают эластические свойства каучука, повышают морозостойкость резины.

В качестве мягчителей вводят парафин, вазелин, стеариновую кислоту, битумы, дибутилфталат,растительные масла.

Активные наполнители (углеродистая сажа и белая сажа) повышают механические свойства резин: прочность, сопротивление истиранию, твердость. Неактивные наполнители (мел, тальк, барит) вводятся для удешевления стоимости резины. Часто в состав резиновой смеси вводят регенерат — продукт переработки старых резиновых изделий и отходов резинового Производства. Кроме снижения стоимости регенерат повышает качество резины, снижая ее склонность к старению.

Некоторые красящие вещества (белые, желтые, зеленые) поглощают коротковолновую часть солнечного спектра и этим защищают резину от светового старения.

Свойства резины

Подавляющее большинство каучуков является непредельными, высокополимерными (карбоцепными) соединениями с двойной химической связью между углеродными атомами в элементарных звеньях макромолекулы. (Некоторые каучуки получают на основе насыщенных линейных полимеров.) Молекулярная масса каучуков исчисляется в 400 000—450 000. Структура макромолекул линейная или слаборазветвленная и состоит из отдельных звеньев, которые имеют тенденцию свернуться в клубок, занять минимальный объем, но этому препятствуют силы межмолекулярного взаимодействия, поэтому молекулы каучука извилистые (зигзагообразные). Такая форма молекул и является причиной исключительно высокой эластичности каучука (под небольшой нагрузкой происходит выпрямление молекул, изменяется их конформация).

Вулканизация

По свойствам каучуки напоминают термопластичные полимеры. Наличие в молекулах каучука непредельных связей позволяет при определенных условиях переводить его в термостабильное состояние. Для этого по месту двойной связи присоединяется двухвалентная сера (или другое вещество), которая образует в поперечном направлении как бы «мостики» между нитевидными молекулами каучука, в результате чего получается пространственно-сетчатая структура, присущая резине (вулканизату). Процесс химического взаимодействия каучуков с серой в технике называется вулканизацией.

Многие каучуки растворимы в растворителях, резины только набухают в них и более стойки к химикатам. Резины имеют более высокую теплостойкость (НК размягчается при температуре 90 °С, резина работает при температуре свыше 100°С). На изменение свойств резины влияет взаимодействие каучука с кислородом, поэтому при вулканизации одновременно происходят два процесса: структурирование под действием вулканизующего агента и деструкция под влиянием окисления и температуры. Преобладание того или иного процесса сказывается на свойствах вулканизата. Это особенно характерно для резин из НК. Для синтетических каучуков (СК) процесс вулканизации дополняется полимеризацией: под действием кислорода и температуры образуются межмолекулярные углеродистые связи, упрочняющие термостабильную структуру, что дает повышение прочности.

Термическая устойчивость вулканизата зависит от характера образующихся в процессе вулканизации связей. Наиболее прочные, а следовательно, термоустойчивые связи —С—С—, наименьшая прочность у полисульфидной связи —С—C—С.

Современная физическая теория упрочнения каучука объясняет повышение его прочности наличием сил связи (адсорбции и адгезии), возникающих между каучуком и наполнителем, а также образованием непрерывной цепочно-сетчатой структуры наполнителя вследствие взаимодействия между частицами наполнителя. Возможно и химическое взаимодействие каучука с наполнителем.

Классификация резины по назначению

По назначению резины подразделяют на резины общего назначения и резины специального назначения (специальные).

К группе резин общего назначения относят вулканизаты неполярных каучуков — НК, СКБ, СКС, СКИ.

НК — натуральный каучук является полимером изопрена (С5Н8)n. Он растворяется в жирных и ароматических растворителях (бензине, бензоле, хлороформе, сероуглероде и др.), образуя вязкие растворы, применяемые в качестве клеев. При нагреве выше 80—100 °С каучук становится пластичным и при 200 °С начинает разлагаться. При температуре —70 °С НК становится хрупким. Обычно НК аморфен. Однако при длительном хранении возможна его кристаллизация.

СКБ — синтетический каучук бутадиеновый (дивинильный) получают по методу С. В. Лебедева. Формула полибутадиена (С4Н6)n. Он является некристаллизующимся каучуком и имеет низкий предел прочности при растяжении, поэтому в резину на его основе необходимо вводить усиливающие наполнители. Морозостойкость бутадиенового каучука невысокая (от —40 до —45 °С).

СКС — бутадиенстирольный каучук получается при совместной полимеризацией бутадиена (С4Н6) и стирола (СН2=СН—С6Н5). Это самый распространенный каучук общего назначения.

СКИ — синтетический каучук изопреновый — продукт полимеризации изопрена (С5Н8). Получение СКИ стало возможным в связи с применением новых видов катализаторов. По строению, химическим и физико-механическим свойствам СКИ близок к натуральному каучуку. Промышленностью выпускаются каучуки СКИ-3 и СКИ-ЗП, наиболее близкие по свойствам к НК; каучук СКИ-ЗД, предназначенный для получения электроизоляционных резин, СКИ-ЗВ — для вакуумной техники.

Резины общего назначения могут работать в среде воды, воздуха, слабых растворов кислот и щелочей. Интервал рабочих температур составляет от —35 до 130 °С. Из этих резин изготовляют шины, ремни, рукава, конвейерные ленты, изоляцию кабелей, различные резинотехнические изделия.

Резины специального назначения

Специальные резины подразделяют на несколько видов: маслобензостойкие, теплостойкие, светоозоностойкие, износостойкие, электротехнические, стойкие к гидравлическим жидкостям.

Маслобензостойкие резины получают на основе каучуков хлоропренового (наирит), СКН и тиокола. Наирит является отечественным хлоропреновым каучуком. Хлоропрену соответствует формула СН2==ССI—СН=СН2.Вулканизация может проводиться термообработкой даже без серы, так как под действием температуры каучук переходит в термостабильное состояние. Резины на основе наирита обладают высокой эластичностью, вибростойкостью, озоностойкостью, устойчивы к действию топлива и масел, хорошо сопротивляются тепловому старению. (Окисление каучука замедляется экранирующим действием хлора на двойные связи.) По температуроустойчивости и морозостойкости (от —35 до —40 °С) они уступают как НК, так и другим СК. Электроизоляционные свойства резины на основе полярного наирита ниже, чем у резины на основе неполярных каучуков. (За рубежом полихлоропреновый каучук выпускается под названием неопрен, пербунан-С и др.).

СКН — бутадиеннитрильный каучук — продукт совместной полимеризации бутадиена с нитрилом акриловой кислоты —СН2—СН =СН—СН2—СН2—СНСN— Резины на основе СКН обладают высокой прочностью ((в = 35 МПа), хорошо сопротивляются истиранию, но по эластичности уступают резинам на основе НК, превосходят их по стойкости к старению и действию разбавленных кислот и щелочей. Резины могут работать в среде бензина, топлива, масел в интервале температур от -30 до 130 °С. Резины на основе СКН применяют для производства ремней, конвейерных лент, рукавов, маслобензостойких резиновых деталей (уплотнительные прокладки,манжеты и т. п.).

Тиоколы – торговое название полисульфидных каучуков. Из смеси каучука с серой, наполнителями и другими веществами формуют нужные изделия и подвергают их нагреванию. При этих условиях атомы серы присоединяются к двойным связям макромолекул каучука и «сшивают» их, образуя дисульфидные «мостики». В результате образуется гигантская молекула, имеющая три измерения в пространстве — как бы длину, ширину и толщину. Полимер приобретает пространственную структуру. Если к каучуку добавить больше серы, чем нужно для образования резины, то при вулканизации линейные молекулы окажутся «сшитыми» в очень многих местах, и материал утратит эластичность, станет твёрдым — получится эбонит. До появления современных пластмасс эбонит считался одним из лучших изоляторов.

Полисульфидный каучук, или тиокол, образуется при взаимодействии галоидопроизводных углеводородов с многосернистыми соединениями щелочных металлов:

...—СН2—СН2—S2—S2—

Тиокол вулканизуется перекисями. Присутствие в основной цепи макромолекулы серы придает каучуку полярность, вследствие чего он становится устойчивым к топливу и маслам, к действию кислорода, озона, солнечного света. Сера также сообщает тиоколу высокую газонепроницаемость (выше, чем у НК), поэтому тиокол — хороший герметизирующий материал.

Механические свойства резины на основе тиокола невысокие. Эластичность резин сохраняется при температуре от —40 до —60 °С. Теплостойкость не превышает 60—70 °С. Тиоколы новых марок работают при температуре до 130 °С. Акрилатные каучуки — сополимеры эфиров акриловой (или метакриловой)кислоты с акрилонитрилом и другими полярными мономерами — можно отнести к маслобензостойким каучукам. Каучуки выпускают марок БАК-12, БАКХ-7, ЭАХ. Для получения высокопрочных резин вводят усиливающие наполнители. Достоинством акрилатных резин является стойкость к действию серосодержащих масел при высоких температурах; их широко применяют в автомобилестроении.Они стойки к действию кислорода, достаточно теплостойки, обладают адгезией к полимерам и металлам. Недостатками БАК являются малая эластичность,низкая морозостойкость, невысокая стойкость к воздействию; горячей воды и пара.

Износостойкие резины получают на основе полиуретановых каучуков СКУ. Полиуретановые каучуки обладают высокой прочностью, эластичностью, сопротивлением истиранию, маслобензостойкостью. В структуре каучука нет ненасыщенных связей, поэтому он стоек к кислороду и озону, его газонепроницаемость в 10—20 раз выше, чем газопроницаемость НК. Рабочие температуры резин на его основе составляют от —30 до 130°С.

Уретановые резины стойки к воздействию радиации. Зарубежные названия уретановых каучуков — , вулколлан, адипрен, джентан, урепан. Резины на основе СКУ применяют для автомобильных шин, конвейерных лент, обкладки труб и желобов для транспортирования абразивных материалов, обуви и др.

МЕХАНИЧЕСКИЕ СВОЙСТВА РЕЗИН И КАУЧУКОВ

Общие понятия

Механические свойства каучуков и резин могут быть охарактеризованы комплексом свойств. К особенностям механических свойств каучуков и резин следует отнести:

  • зависимость деформаций от их скорости и продолжительности действия деформирующего усилия, что проявляется в релаксационных процессах и гистерезисных явлениях;

  • зависимость механических свойств каучуков от их предварительной обработки, температуры и воздействия различных немеханических факторов (света, озона, тепла и др.).

Различают деформационно-прочностные, фрикционные и другие специфические свойства каучуков и резин.

К основным деформационно-прочностным свойствам относятся: пластические и эластические свойства, прочность при растяжении,относительное удлинение при разрыве, остаточное удлинение после разрыва,условные напряжения при заданном удлинении, условно-равновесный модуль,модуль эластичности, гистерезисные потери, сопротивление раздиру, твердость.

К фрикционным свойствам резин относится износостойкость, характеризующая сопротивление резин разрушению при трении, а также коэффициент трения.

К специфическим свойствам резин относятся, например, температура хрупкости, морозостойкость, теплостойкость, сопротивление старению.

Очень важным свойством резин является сопротивление старению (сохранение механических свойств) после воздействия света, озона, тепла и других факторов.

Механические свойства резин определяют в статических условиях, т. е. при постоянных нагрузках и деформациях, при относительно небольших скоростях нагружения (например, при испытании на разрыв), а также в динамических условиях, например, при многократных деформациях растяжения, сжатия, изгиба или сдвига. При этом особенно часто резины испытывают на усталостную выносливость и теплообразование при сжатии.

Усталостная выносливость характеризуется числом циклов деформаций, которое выдерживает резина до разрушения. Для сокращения продолжительности определения усталостной выносливости испытания проводят иногда в условиях концентрации напряжений, создаваемых путем дозированного прокола или применения образцов с канавкой.

Теплообразование при многократных деформациях сжатия определяется по изменению температуры образца резины в процессе испытания в заданном режиме (при заданном сжатии и заданной частоте деформаций).

Пластические и эластические свойства

Пластичностью называется способность материала легко деформироваться и сохранять форму после снятия деформирующей нагрузки. Иными словами, пластичность — это способность материала к необратимым деформациям.

Эластичностью называется способность материала легко деформироваться и восстанавливать свою первоначальную форму и размеры после снятия деформирующей нагрузки, т. е. способность к значительным обратимым деформациям.

Эластическими деформациями, в отличие от упругих, называются такие обратимые деформации, которые характеризуются значительной величиной при относительно малых деформирующих усилиях (низкое значение модуля упругости).

Пластические и эластические свойства каучука проявляются одновременно; в зависимости от предшествующей обработки каучука каждое из них проявляется в большей или меньшей степени. Пластичность невулканизованного каучука постепенно снижается при вулканизации, а эластичность возрастает.В зависимости от степени вулканизации соотношение этих свойств каучука постепенно изменяется. Для невулканизованных каучуков более характерным свойством является пластичность, а вулканизованные каучуки отличаются высокой эластичностью. Но при деформациях невулканизованного каучука наблюдается также частичное восстановление первоначальных размеров и формы,т. е. наблюдается некоторая эластичность, а при деформациях резины можно наблюдать некоторые неисчезающие остаточные деформации.

Упругая деформация практически устанавливается мгновенно при приложении деформирующего усилия и также мгновенно исчезает после снятия нагрузки; обычно она составляет доли процента от общей деформации. Этот вид деформации обусловлен небольшим смещением атомов, изменением межатомных и межмолекулярных расстояний и небольшим изменением валентных углов.

Высокоэластическая деформация резин увеличивается во времени по мере действия деформирующей силы и достигает постепенно некоторого предельного (условно-равновесного) значения. Она так же, как и упругая деформация, обратима; при снятии нагрузки высокоэластическая деформация постепенно уменьшается, что приводит к эластическому восстановлению деформированного образца. Высокоэластическая деформация, в отличие от упругой,характеризуется меньшей скоростью, так как связана с конформационными изменениями макромолекул каучука под действием внешней силы. При этом происходит частичное распрямление и ориентация макромолекул в направлении растяжения. Эти изменения не сопровождаются существенными нарушениями межатомных и межмолекулярных расстояний и происходят легко при небольших усилиях. После прекращения действия деформирующей силы вследствие тепловогодвижения происходит дезориентация молекул и восстановление размеров образца. Специфическая особенность механических свойств каучуков и резин связана с высокоэластической деформацией.

Пластическая деформация непрерывно возрастает при нагружении и полностью сохраняется при снятии нагрузки. Она характерна для невулканизованного каучука и резиновых смесей и связана с необратимым перемещением макромолекул друг относительно друга.

Скольжение молекул у вулканизованного каучука сильно затруднено наличием прочных связей между молекулами, и поэтому вулканизаты, не содержащие наполнители, почти полностью восстанавливаются после прекращения действия внешней силы. Наблюдаемые при испытании наполненных резин неисчезающие деформации являются следствием нарушения межмолекулярных связей, а также следствием нарушения связей между каучуком и компонентами, введенными в нею, например вследствие отрыва частиц ингредиентов от каучука. Неисчезающие остаточные деформации часто являются кажущимися вследствие малой скорости эластического восстановления, т. е. оказываются практически исчезающими в течение некоторого достаточно продолжительного времени.

Твердость резины

Твердость резины характеризуется сопротивлением вдавливанию в резину металлической иглы или шарика (индентора) под действием усилия сжатой пружины или под действием груза.

Для определения твердости резины применяются различные твердомеры. Часто для определения твердости резины используется твердомер ТМ-2 (типа Шора), который имеет притупленную иглу, связанную с пружиной, находящейся внутри прибора. Твердость определяется глубиной вдавливания иглы в образец под действием сжатой пружины при соприкосновении плоскости основания прибора с поверхностью образца (ГОСТ 263—75). Вдавливание иглы вызывает пропорциональное перемещение стрелки по шкале прибора. Максимальная твердость, соответствующая твердости стекла или металла, равна 100 условным единицам. Резина в зависимости от состава и степени вулканизации имеет твердость в пределах от 40 до 90 условных единиц. С увеличением содержания наполнителей и увеличением продолжительности вулканизации твердость повышается; мягчители (масла) снижают твердость резины.

Теплостойкость

О стабильности механических свойств резины при повышенных температурах судят по показателю ее теплостойкости. Испытания на теплостойкость производят при повышенной температуре (70 °С и выше) после прогрева образцов при температуре испытания в течение не более 15 мин (во избежание необратимых изменений) с последующим сопоставлением полученных результатов с результатами испытаний при нормальных условиях (23±2°С).

Количественной характеристикой теплостойкости эластомеров служит коэффициент теплостойкости, равный отношению значений прочности при растяжении, относительного удлинения при разрыве и других показателей, определенных при повышенной температуре, к соответствующим показателям, определенным при нормальных условиях. Чем ниже показатели при повышенной температуре по сравнению с показателями при нормальных условиях, тем ниже коэффициент теплостойкости.

Полярные каучуки обладают пониженной теплостойкостью. Наполнители значительно повышают теплостойкость резин.

Износостойкость

Основным показателем износостойкости является истираемость и сопротивление истиранию, которые определяются в условиях качения с проскальзыванием (ГОСТ 12251—77) или в условиях скольжения по истирающей поверхности, обычно, как и в предыдущем случае, по шлифовальной шкурке (ГОСТ 426—77).

Истираемость ( определяется как отношение уменьшения объема образца при истирании к работе, затраченной на истирание, и выражается в м3/МДж [см3/(кВт(ч)]. Сопротивление истиранию ( определяется как отношение затраченной работы на истирание к уменьшению объема образца при истирании и выражается в МДж/м3 [см3/(кВт(ч)].

Истирание кольцевых образцов при качении с проскальзыванием более соответствует условиям износа протекторов шин при эксплуатации и поэтому применяется при испытаниям на износостойкость протекторных резин.

Теплообразование при многократном сжатии

Теплообразование резины при многократном сжатии цилиндрических образцови характеризуется температурой, развивающейся в образце вследствие внутреннего трения (или повышением температуры при испытании).

Морозостойкость резины

Морозостойкость—способность резины сохранять высокоэластические свойства при пониженных температурах. Свойства резин при пониженных температурах характеризуются коэффициентом морозостойкости при растяжении, температурой хрупкости и температурой механического стеклования.

Коэффициент морозостойкости при растяжении (ГОСТ 408—66) представляет собой отношение удлинения образца при пониженной температуре к удлинению его (равному 100%) при температуре 23±2°С под действием той же нагрузки.

Резина считается морозостойкой при данной температуре, если коэффициент морозостойкости выше 0,1.

Температура хрупкости Тхр—максимальная минусовая температура, при которой консольно закрепленный образец резины разрушается или дает трещину при изгибе под действием удара! ГОСТ 7912—74). Температура хрупкости резин зависит от полярности и гибкости макромолекул, с повышением гибкости молекулярных цепей она понижается.

Температурой механического стеклования называется температура, при которой каучук или резина теряют способность к высокоэластическим деформациям.По ГОСТ 12254—66 этот показатель определяется на образцах,замороженных при температуре ниже температуры стеклования. Образец резины цилиндрической формы нагружают (после предварительного замораживания) и затем медленно размораживают со скоростью 1 °С в минуту и находят температуру, при которой деформация образца начинает резко возрастать.

Сопротивление старению и действию агрессивных сред

Старением называется необратимое изменение свойств каучука или резины под действием тепла, света, кислорода, воздуха, озона или агрессивных сред, т.е. преимущественно немеханических факторов.Старение активируется, если резина одновременно подвергается воздействию механических нагрузок.

Испытания на старение производят, выдерживая резину в различных условиях (на открытом воздухе, в кислороде или воздух при повышенной температуре; в среде озона или при воздействии света и озона).При атмосферном старении на открытом воздухе или термическом старении в среде горячего воздуха (ГОСТ 9.024—74) результат испытания оценивают коэффициентом старения, который представляет отношение изменения показателей каких-либо свойств, чаще всего предела прочности и относительного удлинения при разрыве к соответствующим показателям до старения. Чем меньше изменения свойств при старении и коэффициент старения, тем выше сопротивление резины старению.

Сопротивление действию различных сред (масел, щелочей, кислот и др.) оценивается по изменению свойств — предела прочности при растяжении и относительного удлинения при разрыве в 1этих средах.Оно характеризуется коэффициентом, представляющим отношение показателя после воздействия агрессивной среды к соответствующему показателю до ее воздействия.

ДОЛГОВЕЧНОСТЬ И УСТАЛОСТНАЯ ВЫНОСЛИВОСТЬ РЕЗИН

Прочность любого твердого тела понижается с увеличением продолжительности действия напряжения и поэтому разрушающая нагрузка не является константой твердого тела. Разрушающая нагрузка - условная мера прочности только при строго определенных скорости деформации и температуре. Снижение прочности материала, находящегося в статически напряженном состоянии, называется статической усталостью. Продолжительность пребывания тела в напряженном состоянии от момента нагружения до разрушения называется долговечностью материала под нагрузкой. При температурах ниже ТХР полимеры ведут себя подобно хрупким твердым телам.

Снижение прочности материала вследствие многократных деформаций называется динамической усталостью или утомлением.

Сопротивление резин утомлению или динамическая выносливость выражается числом циклов деформации, необходимым для разрушения образца. Максимальное напряжение в цикле деформации, соответствующее разрушению образца в условиях многократных деформаций, называется усталостной прочностью, а время, необходимое для разрушения резины в условиях многократных деформаций, - динамической долговечностью.

Наиболее распространенным режимом испытаний на многократное растяжение является режим постоянных максимальных удлинений, который осуществляется на машине МРС-2. Это испытание проводится при постоянной амплитуде и заданной частоте (250 и 500 цикл/мин), а также при постоянном максимальном и среднем значениях деформации.

Влияние структуры и состава резин на ее долговечность. Как правило, резина имеет высокую усталостную выносливость, если она обладает высокой прочностью, малым внутренним трением и высокой химической стойкостью. Влияние структуры или состава резины на эти свойства различно. Влияние типа каучука, характера вулканизационной сетки наполнителей, пластификаторов,антиоксидантов также неоднозначно. Методы испытания долговечности выбираются с учетом реальных условий эксплуатации резины, видов и условий деформаций, имеющих решающее значение.

www.rubberinfo.ru


Смотрите также