Карбюраторный двигатель описание характеристики фото видео принцип работы. Карбюраторный двигатель на бензине


Карбюраторный двигатель: устройство, принцип работы, характеристики

Карбюраторный двигатель — это отдельный вид двигателя внутреннего сгорания (ДВС) с наружным формированием смеси. В карбюраторном двигателе внутреннего сгорания горючая смесь по коллектору проходит в цилиндры двигателя и вырабатывается в карбюраторе.

Карбюратор — конструкция в системе питания двигателей внутреннего сгорания, которая служит для перемешивания бензина с воздухом, образовывает горючую смесь и корректирует ее потребление. На сегодняшний день карбюраторные системы заменяются инжекторными.

Смесь представляет собой пары бензина смешанные с воздухом. Когда она проходит в цилиндры двигателя происходит перемешивание с отработанными газами и образование рабочей смеси, которая в конкретный момент поджигается системой зажигания. Поджигание смеси производится благодаря тому, что бензин поступает в газообразном виде и имеется достаточное количество воздуха для горения.

Карбюратор

Карбюраторные двигатели подразделяются на четырехтактные и двухтактные. Рабочий цикл четырехтактного карбюраторного двигателя складывается из четырех тактов, они состоят из четырех полуоборотов коленчатого вала; двухтактные же состоят из двух полуоборотов коленчатого вала. Двухтактные двигатели наиболее легкие и получили свое применение в мотоциклах, мотокультиваторах, бензопилах и в других аппаратах.

Двигатели этого типа делятся на два подтипа:

  • Атмосферные, где рабочая смесь проходит благодаря разреживанию в цилиндре при вбирающем движении поршня;
  • Двигатели с наддувом. В них запуск горючей смеси в цилиндр осуществляется под воздействием давления, которое производится компрессором для расширения мощности двигателя. В различные времена использовались спирт, газ, керосин, бензин, но наиболее используемыми остались бензиновые и газовые двигатели.

Устройство карбюраторного двигателя

Общее устройство наиболее простого карбюратора заключает в себе поплавковую камеру с поплавком, жиклёр с распылителем, диффузор и дроссельную заслонку.

Если рассмотреть строение двигателя Л-12/4, то в блоке имеется четыре цилиндра. Вращение коленвала происходит на трех подшипниках. Центральный подшипник прикреплен к валу втулкой. На передней части вала прикрепляется маховик, который приводит в действие детали механизма и скапливает кинетическую энергию, она нужна для движения коленвала в период подготовительных тактов.

Карбюратор

Смазка деталей происходит благодаря разбрызгиванию, шестеренчатый насос помогает началу движения распредвала и подает масло, которое разбрызгивается черпаками, происходит зажигание. Радиатор оснащен вентилятором, который служит для охлаждения воды.

На картере установлен сапун, который снижает давление благодаря выпуску газов.

Также имеется глушитель, который уменьшает шум от выхода отработанных газов. Количество оборотов коленчатого вала в автоматическом режиме устанавливает регулятор.

У двигателей ГАЗ-МК верхний отдел картера сделан из чугуна вместе с устройством цилиндров, которые охвачены водяной рубашкой и перекрыты головкой из чугуна, где и расположены камеры сгорания. Также имеются разъемы для свечей зажигания.

Водяная рубашка подсоединена к системе охлаждения. Низ двигателя затянут стальным поддоном, который выполняет функцию емкости для масла. Также там закреплен масляный насос, который приводит в движение распредвал.

Вращение коленчатого вала происходит также на трех подшипниках. Их вкладыши заполнены баббитом, где имеются смазочные канавки.

Чугунные крышки подшипников прикрепляются к блоку двумя болтами.

Бронзовые вкладыши

Передний сальник коленвала сделан из двух частей и представляет сердечник, который окружен платиной асбеста. Поршни сделаны из алюминия и скреплены шатуном полым стальным пальцем. Маховик прикреплен к коленвалу. Распредвал вращается на трех подшипниках и приводится в движение двумя шестернями.

Клапаны двигателя находятся справа. Система питания включает в себя бензобак, бензопроводы, отстойник, карбюратор и воздушный фильтр.

Бензобак находится выше карбюратора, поэтому топливо поступает самотеком.

Уровень масла в картере определяется специальным щупом. Охлаждение двигателя водяное. Радиатор размещен с задней стороны двигателя, водяной насос — с передней стороны. Вода, которая двигается по трубкам радиатора, остывает при помощи воздушного потока от вентилятора.

Принцип работы карбюраторного двигателя

Принцип действия карбюраторного двигателя относительно простой и складывается из четырех тактов, которые совпадают с движением вверх и вниз в последовательности один за одним:

  • Первый такт — впуск; клапан впуска отворяется и в цилиндр доставляется новая смесь от системы питания.
  • Второй такт — сжатие; поршень сдавливает горючую смесь в камере сгорания. Все клапаны прикрыты.
  • Третий такт — расширение; происходит возгорание сдавленной горючей смеси от свечи зажигания. Смесь сжигается достаточно быстро при неизменном объеме, который соответствует объему самой камеры сжатия. Это основная характерность работы карбюраторного двигателя. При перегорании формируются газы, которые двигают поршень книзу и передают движение коленвалу.
  • Четвертый такт — впрыск; коленвал вращается и выбрасывает из цилиндра отработанные газы через приоткрытый клапан выпуска.

Детонация топлива в камере сгорания

На этом один рабочий цикл карбюраторного двигателя заканчивается.

При первом такте клапан впуска уже в открытом виде при подходе поршня и благодаря высокой скорости движения поршня рабочая смесь продвигается к цилиндру и еще какое-то время при поднятии поршня во втором такте.

Искра поджигает рабочую смесь до того, как в цилиндре образуется высокое давление. В четвертом такте клапан выпускает отработанные испарения, чем очищает цилиндр еще до подхода поршня. Однако выход газов не прекращается даже после подхода поршня. Затем происходит запуск новой порции рабочей смеси, которая опять проходит в цилиндр.

Отсюда следует, что в работе между первым и четвертым тактом единовременно открываются клапаны впуска и выпуска, то есть происходит перекрытие клапанов. За момент перекрытия цилиндр очищается и в нем происходит разрежение, которое помогает выгоднее заполнить цилиндр горючей смесью при первом такте.

В таком двигателе происходит наружное образование рабочей смеси с ее сжатием и вынужденным поджиганием. На сегодняшний день как топливо чаще используется бензин, но они могут отлично выполнять свою работу и на газу.

Также популярны дизельные двигатели, где поджигание происходит от сжатия, их принцип работы зависит от нагревания газа при сжатии. Когда сжатие повышается, температура также поднимается. В это время в камеру сгорания через форсунку происходит впрыск топлива, которое поджигается и от полученных газов поршень передвигается. Сгорание топлива происходит после начала движения поршня.

Детонация топлива в камере сгорания

Выше указан принцип работы одноцилиндрового двигателя, но он не способен создать условия непрерывного вращения с одинаковой скоростью. Расширенные газы оказывают действие на коленвал для его 1/4 части оборота, оставшиеся ¾ оборота движения поршня происходят по инерции.

Для ликвидации такой недоработки двигатели делают многоцилиндровыми, что способствует наиболее равномерному вращению и неизменному крутящему моменту.

Характеристики карбюраторного двигателя

Работа двигателя определяется его мощностью, действенным давлением, крутящим моментом, скоростью и частотой вращения коленчатого вала и потребление топлива.

Мощность карбюраторного двигателя, а также его крутящий момент подчиняются скорости вращения коленвала и высоты давления.

Скоростная характеристика карбюраторного двигателя устанавливается наивысшей мощностью, которую реально получить от давления при разной частоте вращения коленвала.

При небольшой скорости движения коленчатого вала давление в цилиндрах невысокое и мощность двигателя, соответственно, тоже небольшая. При ускорении вращения коленвала и давление поднимается, так как горючая смесь сгорает быстрее.

Детонация топлива в камере сгорания

Потребление топлива увеличивается при небольшой частоте вращения коленчатого вала, так как процесс сгорания проходит медленнее, теплоотдача большая, а при увеличении частоты вращения механические и тепловые затраты увеличиваются.

Скоростная характеристика дизельного двигателя определяется при недвижимой рейке топливного насоса, который дает высокую подачу топлива на конкретном режиме скорости и бездымной эксплуатации.

При заведенном двигателе автомобиля количество вращений коленвала меняется. Если беспричинно увеличивается потребление топлива, то происходит это благодаря ухудшению рабочего процесса двигателя.

Управление карбюратором

Как правило, действиями карбюратора руководит водитель автомобиля. На отдельных моделях карбюраторов применялись вспомогательные системы, которые немного автоматизировали управление карбюратором.

Для того чтобы управлять дроссельной заслонкой наиболее часто пользуются педалью газа, которая обуславливает ее подвижность при содействии системы тяг либо тросового привода. Тяга, как правило, лучше, однако механизм привода куда сложнее и сдерживает способность механизма по компоновке подкапотной площади. Привод тягами был популярен до 1970 года, потом стали чаще использоваться тросики из металла.

Карбюратор

На старых машинах чаще предполагалась двойная система привода дроссельной заслонки карбюратора: вручную рычагом либо от ноги, при помощи педали. Если надавливать на педаль, то рычаг не двигается, а если перемещать рычаг, то педаль опускается.

Последующее открытие дросселя можно совершать педалью. Когда педаль опускается — дроссель остается в таком же положении, в котором зафиксировался при управлении рукой. К примеру, на «Волге» ГАЗ-21 на панели приборов был размещен рычаг для управления рукой, при его движении можно достичь постоянного функционирования холодного двигателя без действия воздушной заслонки либо применять «постоянный газ». На грузовиках «постоянный газ» применялся для облегчения передвижения задним ходом.

Воздушная заслонка может быть оснащена механическим либо автоматическим приводом. Если привод механический, то водитель закрывает ее при участии рычага. Автоматический привод очень популярен в других странах, а в России не «прижился» из-за своей ненадежности и недолгим сроком службы.

Регулировки карбюратора

Карбюратор — устройство, которое имеет наименьшее количество регулировок, но нуждается в хорошо отлаженной системе. Неорганизованная эксплуатация карбюратора сильно действует на функциональность двигателя в целом. При плохой регулировке карбюратора снижается экономичность двигателя и повышается токсичность отработанного газа.

Карбюратор

Подходящие виды регулирования карбюратора:

  • «Винт количества» — функционирование на холостом ходу;
  • «Винт качества» — насыщенность рабочей смеси (как результат, повышение токсичности выхлопных газов) на холостом ходу.

В период использования нужно прослеживать дееспособность нижеуказанных узлов:

  1. Действие клапана и схема холостого хода.
  2. Работа насоса (запаздывание действия, объем и время впрыска бензина).
  3. Размеренность работы, беспрепятственное движение, возврат пружиной и нужная степень открытия дроссельной заслонки.
  4. Действие холодного запуска (закрывание воздушной и степень открывания дроссельной и воздушной заслонок)
  5. Деятельность поплавковой конструкции (необходимое количество топлива в поплавковой камере, непроницаемость клапана).
  6. Пропускная возможность жиклеров.

На работоспособность карбюратора воздействуют:

  • Система регулирования карбюратора.
  • Установка пропуска воздуха (воздушный фильтр, обогрев воздуха).
  • Система подачи топлива (бензонасос, фильтры, заборники).
  • Трубка для слива излишков бензина.
  • Непроницаемость впускного канала, который расположен за карбюратором.
  • Нарушение клапанного устройства.
  • Качество топлива.

avtodvigateli.com

Автомобили с карбюраторным двигателем

Автомобили с карбюраторным двигателем а также и дизельным

Автомобили с карбюраторным двигателемАвтомобили с карбюраторным двигателем в качестве силовой установки на автомобилях используется двигатель внутреннего сгорания.

По виду применяемого топлива двигатели подразделяются на карбюраторные, дизельные и газовые.

Карбюраторные – это двигатели, работающие на жидком топливе (бензине), с принудительным зажиганием. Перед подачей в цилиндры двигателя, топливо перемешивается с воздухом в определенной пропорции с помощью карбюратора.

Карбюраторный двигатель - один из типов двигателя внутреннего сгорания с внешним смесеобразованием и автономным зажиганием.

В карбюраторном двигателе в цилиндры двигателя поступает готовая топливовоздушная смесь, приготавливаемая чаще всего вкарбюраторе, давшем название типу двигателя, либо в газовоздушном смесителе, либо образующаяся при впрыске топлива, распыленного специальной форсункой, в поток всасывающегося воздуха — такие двигатели называются впрысковыми или инжекторными.

Независимо от способа смесеобразования и количества тактов в рабочем цикле карбюраторные двигатели имеют одинаковый принцип работы, а именно: сжатая в камере сгорания горючая смесь в определенный момент поджигается системой зажигания, чаще всего электроискровой. Может также использоваться зажигание смеси от калильной трубки, в настоящее время в основном в дешевых малогабаритных двигателях, например, на авиамоделях; плазменное, лазерное зажигание — в настоящее время в состоянии, скорее, экспериментальных разработок. Источник

Дизельные - это двигатели, работающие на жидком топливе (дизельном топливе), с воспламенением от сжатия. Подача топлива осуществляется форсункой, а смешивание с воздухом происходит внутри цилиндра.

Газовые - это двигатели, которые работают на пропано-бутановом газе, с принудительным зажиганием. Перед подачей в цилиндры двигателя, газ смешивается с воздухом в карбюраторе. По принципу работы такие двигатели практически не отличаются от карбюраторных (бензиновых). Поэтому в объеме этой книги не имеет смысла подробно останавливаться на рассмотрении газовых установок. Однако, если вы переоборудовали свой автомобиль «на газ», то советую внимательно изучить прилагаемую к оборудованию инструкцию.

При работе двигателя внутреннего сгорания из каждых десяти литров использованного топлива, к сожалению, только около двух идет на полезную работу, а все остальные — на «согревание» окружающей среды. Коэффициент полезного действия ныне выпускаемых двигателей составляет всего около 20%. Но мир пока не придумал более совершенного устройства, которое могло бы долго и надежно работать при более высоком КПД.

Карбюраторные поршневые двигатели. Автомобили с карбюраторным двигателем

К основным механизмам и системам карбюраторного поршневого двигателя относятся:

  • кривошипно-шатунный механизм,
  • газораспределительный механизм,
  • система питания,
  • система выпуска отработавших газов,
  • система зажигания,
  • система охлаждения,
  • система смазки.
Автомобили с карбюраторным двигателем
Рис. 6 Одноцилиндровый карбюраторный двигатель внутреннего сгорания а) «стакан» в «стакане»; б) поперечный разрез1 — головка цилиндра; 2 — цилиндр; 3 — поршень; 4 — поршневые кольца; 5 — поршневой палец; 6 — шатун; 7 — коленчатый вал; 8 — маховик; 9 — кривошип; 10 — распределительный вал; 11 — кулачок распределительного вала; 12 — рычаг; 13 — клапан; 14 — свеча зажигания

Для начала, давайте возьмем простейший одноцилиндровый карбюраторный двигатель (рис.6) и разберемся с принципом его работы. Рассмотрим протекающие в нем процессы, и выясним, наконец, откуда все-таки берется тот самый крутящий момент, который в конечном итоге приходит на ведущие колеса автомобиля.Основной частью одноцилиндрового карбюраторного двигателя (рис. 6), является цилиндр с укрепленной на нем съемной головкой. Если продолжить сравнение элементов автомобиля с предметами, всем известными в быту, то цилиндр вместе с головкой, очень похож на обыкновенный стакан, перевернутый вверх дном.Внутри цилиндра помещен еще один «стакан», также вверх дном, это — поршень. На поршне в специальных канавках находятся поршневые кольца. Именно они скользят по зеркалу внутренней поверхности цилиндра, и они же не дают возможности газам, образующимся в процессе работы двигателя, прорваться вниз. В тоже время кольца препятствуют попаданию вверх масла, которым смазывается внутренняя поверхность цилиндра.С помощью пальца и шатуна, поршень соединен с кривошипом коленчатого вала, который вращается в подшипниках, установленных в картере двигателя. На конце коленчатого вала крепится массивный маховик.

Через впускной клапан в цилиндр поступает горючая смесь (смесь воздуха с бензином), а через выпускной клапан выходят отработавшие газы. Клапаны открываются при набегании кулачков вращающегося распределительного вала на рычаги. При сбегании же кулачков с рычагов, клапаны надежно закрываются под воздействием мощных пружин. Распределительный вал с кулачками приводится во вращение от коленчатого вала двигателя.В резьбовое отверстие головки цилиндра ввернута свеча зажигания, которая электрической искрой, проскакивающей между ее электродами, воспламеняет рабочую смесь (это горючая смесь перемешанная с остатками выхлопных газов, о чем более подробно рассказано ранее).Думаю, что после знакомства с основными деталями одноцилиндрового двигателя, вы уже начали догадываться о том, как он работает. Но давайте все-таки разберемся с тем, как происходит преобразование возвратно-поступательного движения поршня в цилиндре во вращательное движение коленчатого вала. Этим в двигателе занимается шатунно-поршневая группа.

Вспомните теплый летний вечер, когда вы катались на велосипеде и даже не задумывались о том, как он перемещается в пространстве. А сейчас давайте посмотрим на действия велосипедиста со стороны. Нажимая на педаль одной ногой, мы поворачиваем ось педалей на пол-оборота, затем помогает вторая нога, нажимая на вторую педаль и… колесо вращается, велосипед едет! Необходимо отметить, что работа двух ног — это пример двухцилиндрового двигателя. Чтобы не чувствовать себя обманутым, можете привязать одну ногу к педали и использовать только ее для нашего эксперимента.При дальнейшем изучении работы ноги велосипедиста можно увидеть принцип работы шатунно-поршневой группы двигателя. Роль шатуна выполняет голень ноги, поршнем с верхней головкой шатуна является — колено, ну а нижняя головка шатуна на кривошипе – это ступня на педали.Колено велосипедиста движется только вверх — вниз (как поршень), а ступня с педалью уже по окружности (как кривошип коленчатого вала). Так это и есть преобразование возвратно-поступательного движения во вращательное. В двигателе, взаимодействие деталей шатунно-поршневой группы точно такое же, как и в рассмотренном нами примере с ногой велосипедиста.

Автомобили с карбюраторным двигателем
Рис. 7 Ход поршня и объемы цилиндра двигателяа) поршень в нижней мертвой точкеб) поршень в верхней мертвой точке

На рисунке 7 показаны некоторые параметры цилиндра и поршня, которые используются для оценки того или иного двигателя (объемы цилиндра и ход поршня).Крайние положения поршня, при которых он

[spoiler]

наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ). При езде на велосипеде колено вашей ноги, также как и поршень, периодически будет находиться в крайнем верхнем или крайнем нижнем положениях.Ходом поршня называется путь, пройденный от одной «мертвой» точки до другой — S.

Объемом камеры сгорания называется объем, расположенный над поршнем, находящимся в ВМТ — Vс.

Рабочим объемом цилиндра называется объем, освобождаемый поршнем при перемещении от ВМТ к НМТ — VР.

Полным объемом цилиндра является сумма объемов камеры сгорания и рабочего объема: Vп = VР + Vс.

Рабочий объем двигателя, это сумма рабочих объемов всех цилиндров и измеряется он в литрах. Пока мы с вами рассматриваем только одноцилиндровый двигатель, а вообще двигатели современных легковых автомобилей имеют, как правило — 4, 6, 8 и даже 12 цилиндров. Соответственно, чем больше рабочий объем — тем более мощным будет двигатель. Измеряется мощность в киловаттах или в лошадиных силах (кВт или л.с.).Например, рабочий объем двигателя ВАЗ 2105 — 1,3 литра, его мощность 46,8 кВт (63,7 л.с.). А рабочий объем двигателя ВАЗ 21083 — 1,5 литра и его мощность 51,5 кВт (70 л.с.).

Рабочий цикл четырехтактного карбюраторного двигателя.

Двигатели внутреннего сгорания отличаются друг от друга рабочим циклом, по которому они работают.Рабочий цикл - это комплекс последовательных рабочих процессов, периодически повторяющихся в каждом цилиндре при работе двигателя.Рабочий процесс, происходящий в цилиндре за один ход поршня, называется тактом.По числу тактов, составляющих рабочий цикл, двигатели делятся на два вида:

  • четырехтактные — в которых рабочий цикл совершается за четыре хода поршня,
  • двухтактные — в которых рабочий цикл совершается за два хода поршня.

На легковых автомобилях отечественного производства применяются четырехтактные двигатели, а на мотоциклах и моторных лодках – двухтактные.О путешествиях по водным просторам поговорим как-нибудь потом, а вот с четырьмя тактами работы автомобильного двигателя разберемся сейчас.Рабочий цикл четырехтактного карбюраторного двигателя состоит из следующих тактов:

  • впуск горючей смеси,
  • сжатие рабочей смеси,
  • рабочий ход,
  • выпуск отработавших газов.
Автомобили с карбюраторным двигателем
Рис. 8 Рабочий цикл четырехтактного карбюраторного двигателя а) впуск; б) сжатие; в) рабочий ход; г) выпуск

Первый такт – впуск горючей смеси (рис. 8а).Горючей смесью называется смесь мелко распыленного бензина с воздухом в определенной пропорции. Приготовлением смеси в двигателе занимается карбюратор, о чем мы с вами поговорим чуть позже. А пока следует знать, что соотношение бензина к воздуху 1:15 считается оптимальным для обеспечения нормального процесса горения.При такте впуска поршень от верхней мертвой точки перемещается к нижней мертвой точке. Объем над поршнем увеличивается. Цилиндр заполняется горючей смесью через открытый впускной клапан. Иными словами, поршень всасывает горючую смесь.Хочется посоветовать читателю, почаще включать свое воображение, сравнивая сложное с простым. Если вам удастся почувствовать, как бы ощутить на себе те процессы, которые протекают в двигателе, да и в автомобиле в целом, то многие из «секретов» машины станут для вас «открытой книгой».

Например, наверняка каждый из вас видел, как медицинская сестра, готовясь сделать укол, набирает шприцем лекарство из ампулы. За счет перемещения поршня шприца, над ним создается разряжение, которое и засасывает из ампулы то, что позже «вольется» в «мягкое место» пациента. Почти то же самое происходит и в цилиндре двигателя в процессе такта впуска.Впуск смеси продолжается до тех пор, пока поршень не дойдет до нижней мертвой точки. За первый такт работы двигателя кривошип коленчатого вала поворачивается на пол-оборота.В процессе заполнения цилиндра горючая смесь перемешивается с остатками отработавших газов и меняет свое название, теперь эта смесь называется – рабочая.

Второй такт — сжатие рабочей смеси (рис. 8б).При такте сжатия поршень от нижней мертвой точки перемещается к верхней мертвой точке.Оба клапана плотно закрыты и поэтому рабочая смесь сжимается. Из школьной физики всем известно, что при сжатии газов их температура повышается. Так и здесь. Давление в цилиндре над поршнем в конце такта сжатия достигает 9 — 10 кг/см2, а температура 300 — 400оС.В заводской инструкции к автомобилю можно увидеть один из параметров двигателя, имеющий название – степень сжатия (например 8,5). А что это такое? Надеюсь сейчас это станет понятно.

Степень сжатия показывает во сколько раз полный объем цилиндра больше объема камеры сгорания (Vп/Vс — см. рис.7). У карбюраторных двигателей в конце такта сжатия, объем над поршнем уменьшается в 8 — 10 раз.В процессе такта сжатия коленчатый вал двигателя поворачивается на очередные пол-оборота. А в сумме, от начала первого такта и до окончания второго, он повернется уже на один оборот.

Третий такт — рабочий ход (рис. 8в).Во время третьего такта происходит преобразование выделяемой при сгорании рабочей смеси энергии в механическую работу. Давление от расширяющихся газов передается на поршень и затем, через шатун и кривошип, на коленчатый вал. Вот откуда берется та сила, которая заставляет вращаться коленчатый вал двигателя и, в конечном итоге, ведущие колеса автомобиля.В самом конце такта сжатия, рабочая смесь воспламеняется от электрической искры, проскакивающей между электродами свечи зажигания. В начале такта рабочего хода, сгорающая смесь начинает активно расширяться. А так как впускной и выпускной клапаны все еще закрыты, то расширяющимся газам остается только один единственный выход — давить на подвижный поршень. Поршень под действием этого давления, достигающего 40 кг/см2, начинает перемещаться к нижней мертвой точке. При этом на всю площадь поршня давит сила 2000 кг и более, которая через шатун передается на кривошип коленчатого вала, создавая крутящий момент. При такте рабочего хода, температура в цилиндре достигает 2000 градусов и выше.

Коленчатый вал при рабочем ходе поршня делает очередные пол-оборота.Позднее мы вернемся к этим огромным цифрам, похожим на температуры в доменной печи. А пока следует отметить для себя, что процесс рабочего хода происходит за очень короткий промежуток времени, по сравнению с которым, удивленное «хлопание» ресницами ваших глаз после прочтения этого сюжета, длится целую вечность.

Четвертый такт — выпуск отработавших газов (рис.8г)При движении поршня от нижней мертвой точки к верхней мертвой точке, открывается выпускной клапан (впускной все еще закрыт) и отработавшие газы с огромной скоростью выбрасываются из цилиндра двигателя. Вот почему слышен тот сильный грохот, когда по дороге едет автомобиль без глушителя выхлопных газов, но об этом позже. А пока обратим внимание на коленчатый вал двигателя — при такте выпуска он делает еще пол-оборота. И всего, за четыре такта рабочего цикла, он сделал два полных оборота.После такта выпуска начинается новый рабочий цикл, и все повторяется: впуск – сжатие – рабочий ход – выпуск… и так далее.

А теперь, интересно, кто из вас обратил внимание на то, что полезная механическая работа совершается двигателем только в течение одного такта — рабочего хода! Остальные три такта называются подготовительными (выпуск, впуск и сжатие) и совершаются они за счет кинетической энергии маховика, вращающегося по инерции.

Автомобили с карбюраторным двигателем
Рис. 9 Коленчатый вал двигателя с маховиком1 — коленчатый вал двигателя; 2 — маховик с зубчатым венцом; 3 — шатунная шейка; 4 — коренная (опорная) шейка; 5 — противовес

Маховик (рис. 9) — это массивный металлический диск, который крепится на коленчатом валу двигателя. Во время рабочего хода, поршень, через шатун и кривошип, раскручивает коленчатый вал двигателя, который и передает запас инерции маховику.Запасенная в массе маховика инерция позволяет ему, в обратном порядке, через коленчатый вал, шатун и поршень осуществлять подготовительные такты рабочего цикла двигателя. То есть, поршень движется вверх (при такте выпуска и сжатия) и вниз (при такте впуска), именно за счет отдаваемой маховиком энергии. Если же двигатель имеет несколько цилиндров, работающих в определенном порядке, то подготовительные такты в одних цилиндрах совершаются за счет энергии, развиваемой в других, ну и маховик конечно тоже помогает.

В далеком детстве у вас наверняка была игрушка, которая называлась «Волчок». Вы раскручивали его энергией своей руки (рабочий ход) и радостно наблюдали за тем, как долго он вращается. Точно также и массивный маховик двигателя — раскрутившись, он запасает энергию, но только значительно большую, чем детская игрушка, а затем эта энергия используется для перемещения поршня в подготовительных тактах.

Дизельные двигатели

Главной особенностью работы дизельного двигателя является то, что топливо подается форсункой или насос-форсункой непосредственно в цилиндр двигателя под большим давлением в конце такта сжатия. Необходимость подачи топлива под большим давлением обусловлена тем, что степень сжатия у таких двигателей в несколько раз больше, чем у карбюраторных. И так как давление и температура в цилиндре дизельного двигателя очень высоки, то происходит самовоспламенение топлива. А это означает, что искусственно поджигать смесь не надо. Поэтому у дизельных двигателей отсутствуют не только свечи, но и вся система зажигания.

Рабочий цикл четырехтактного дизельного двигателя.

Первый такт — впуск, служит для наполнения цилиндра двигателя только воздухом.При движении поршня от верхней мертвой точки к нижней мертвой точке, происходит всасывание воздуха через открытый впускной клапан.

Второй такт — сжатие, необходим для подготовки к самовоспламенению дизельного топлива.При своем движении к верхней мертвой точке, поршень сжимает воздух в 18 — 22 раза (у карбюраторных в 8 — 10 раз). Поэтому в конце такта сжатия, давление над поршнем достигает 40 кг/см2, а температура поднимается выше 500 градусов.

Третий такт — рабочий ход, служит для преобразования энергии сгораемого топлива в механическую работу.В конце такта сжатия, в камеру сгорания, через форсунку под давлением подается дизельное топливо, которое самовоспламеняется за счет высокой температуры сжатого воздуха.При сгорании дизельного топлива (взрыве), происходит его расширение и увеличение давления. При этом возникает усилие, которое перемещает поршень к нижней мертвой точке и через шатун проворачивает коленчатый вал. Во время рабочего хода давление в цилиндре достигает 100 кг/см2, а температура превышает 2000о.

Четвертый такт – выпуск отработавших газов, служит для освобождения цилиндра от отработавших газов.Поршень от нижней мертвой точки поднимается к верхней мертвой точке и, через открытый выпускной клапан, выталкивает отработавшие газы.При своем последующем движении вниз, поршень засасывает свежую порцию воздуха, происходит такт впуска и рабочий цикл повторяется.В дизельном двигателе, нагрузки на все механизмы и детали значительно больше, чем в карбюраторном бензиновом, и это закономерно приводит к увеличению его массы, размеров и стоимости. Однако дизельный двигатель имеет и неоспоримые преимущества — меньший расход топлива, чем у его карбюраторного «брата» (приблизительно на 30%), а также отсутствие системы зажигания, что значительно уменьшает количество возможных неисправностей при эксплуатации. Автомобили с карбюраторным двигателем

[/spoiler]

avto.win7ka.ru

Карбюраторный двигатель описание характеристики фото видео принцип работы

Карбюраторный двигатель — один из типов двигателя внутреннего сгорания с внешним смесеобразованием.

В карбюраторном двигателе топливно-воздушная смесь, поступающая по впускному коллектору в цилиндры двигателя, приготавливается в специальном приборе — карбюраторе. Также карбюраторные двигатели разделяются на двигатели без наддува или атмосферные, у которых впуск воздуха или горючей смеси осуществляется за счет разряжения в цилиндре при всасывающем ходе поршня; двигатели с наддувом, у которых впуск воздуха или горючей смеси в рабочий цилиндр происходит под давлением, создаваемым турбокомпрессором, с целью увеличения заряда воздуха и получения повышенной мощности и КПД двигателя;

В качестве топлива для карбюраторного двигателя в разное время применялись спирт, керосин, лигроин, бензин. Наибольшее распространение получили бензиновые карбюраторные двигатели.

Карбюратор — устройство в системе питания карбюраторных двигателей внутреннего сгорания, предназначенное для смешивания бензина и воздуха, создания горючей смеси и регулирования её расхода. В настоящее время карбюраторные системы подачи топлива вытесняются инжекторными.

 

Простейший карбюратор состоит из четырёх основных элементов: поплавковой камеры (10) с поплавком (3), жиклёра (9) с распылителем (7), диффузора (6) и дроссельной заслонки (5).

Топливо по трубке (1) поступает из бака в поплавковую камеру (10). В поплавковой камере плавает пустотелый, обычно латунный поплавок (3), на который опирается запорная игла (2). Когда уровень топлива в поплавковой камере достигнет необходимой высоты, поплавок всплывёт настолько, что заставит запорную иглу перекрыть трубку (1), прекращая подачу топлива в поплавковую камеру. По мере расходования топлива его уровень в поплавковой камере понижается, поплавок опускается, и запорная игла снова открывает подачу топлива, таким образом в поплавковой камере поддерживается постоянный уровень топлива, что очень важно для правильной дозировки подачи топлива.

Из поплавковой камеры топливо поступает через жиклёр (9) в распылитель (7). Количество топлива, вытекающего из распылителя (7), зависит при прочих равных условиях от размеров и формы жиклёра.

При движении поршня в такте впуска давление в цилиндре снижается. При этом наружный воздух засасывается в цилиндр через карбюратор и впускной трубопровод, проходя через воздушную трубу (8) карбюратора, в которой находится диффузор (6). В самой узкой части диффузора помещается конец распылителя. В сужающейся части диффузора скорость потока воздуха увеличивается, а давление воздуха уменьшается.

Благодаря отверстию (4) в поплавковой камере поддерживается атмосферное давление, в результате под влиянием разности давлений происходит истечение топлива из распылителя. Топливо, вытекающее из распылителя, раздробляется струями воздуха, распыляется, частично испаряется и, перемешиваясь с воздухом, образует горючую смесь. Как правило, вместо одного диффузора используется двойной или даже тройной диффузор. Дополнительные диффузоры расположены концентрически в главном диффузоре и имеют небольшие размеры. Через них проходит только часть общего потока воздуха. Вследствие высокой скорости в центральной части при небольшом сопротивлении основному потоку воздуха достигается более качественное приготовление горючей смеси.

Количество горючей смеси, поступающей в цилиндры двигателя, а следовательно, и мощность двигателя регулируется дроссельной заслонкой (5), которая обычно приводится в движение педалью акселератора (или ручным приводом у мотоциклов и некоторых автомобилей).

Принцип работы карбюраторного двигателя

Принцип действия карбюраторного двигателя относительно простой и складывается из четырех тактов, которые совпадают с движением вверх и вниз в последовательности один за одним:

  • Первый такт — впуск; клапан впуска отворяется и в цилиндр доставляется новая смесь от системы питания.
  • Второй такт — сжатие; поршень сдавливает горючую смесь в камере сгорания. Все клапаны прикрыты.
  • Третий такт — расширение; происходит возгорание сдавленной горючей смеси от свечи зажигания. Смесь сжигается достаточно быстро при неизменном объеме, который соответствует объему самой камеры сжатия. Это основная характерность работы карбюраторного двигателя. При перегорании формируются газы, которые двигают поршень книзу и передают движение коленвалу.
  • Четвертый такт — впрыск; коленвал вращается и выбрасывает из цилиндра отработанные газы через приоткрытый клапан выпуска.

На этом один рабочий цикл карбюраторного двигателя заканчивается.

При первом такте клапан впуска уже в открытом виде при подходе поршня и благодаря высокой скорости движения поршня рабочая смесь продвигается к цилиндру и еще какое-то время при поднятии поршня во втором такте.

Искра поджигает рабочую смесь до того, как в цилиндре образуется высокое давление. В четвертом такте клапан выпускает отработанные испарения, чем очищает цилиндр еще до подхода поршня. Однако выход газов не прекращается даже после подхода поршня. Затем происходит запуск новой порции рабочей смеси, которая опять проходит в цилиндр.

Отсюда следует, что в работе между первым и четвертым тактом единовременно открываются клапаны впуска и выпуска, то есть происходит перекрытие клапанов. За момент перекрытия цилиндр очищается и в нем происходит разрежение, которое помогает выгоднее заполнить цилиндр горючей смесью при первом такте.

В таком двигателе происходит наружное образование рабочей смеси с ее сжатием и вынужденным поджиганием. На сегодняшний день как топливо чаще используется бензин, но они могут отлично выполнять свою работу и на газу.

Также популярны дизельные двигатели, где поджигание происходит от сжатия, их принцип работы зависит от нагревания газа при сжатии. Когда сжатие повышается, температура также поднимается. В это время в камеру сгорания через форсунку происходит впрыск топлива, которое поджигается и от полученных газов поршень передвигается. Сгорание топлива происходит после начала движения поршня.

 

 

Регулировки 

Карбюратор — устройство, имеющее минимум регулировок, но требующее исправной работы узлов и механизмов. Работоспособность карбюратора и его техническое состояние существенно влияют на работу двигателя. Нарушение регулировки карбюратора приводит к ухудшению экономичности, приёмистости двигателя, а также к увеличению токсичности отработавших газов.

Доступные регулировки самого карбюратора:

  1. «Винт количества» — обороты в режиме холостого хода
  2. «Винт качества» — обогащённость топливо воздушной смеси (и, как следствие, содержание токсичного угарного газа в выхлопных газах) в режиме холостого хода.

В процессе эксплуатации необходимо проверять и восстанавливать работоспособность следующих узлов:

  1. работа клапана (герметичность) экономайзера и системы холостого хода
  2. работа ускорительного насоса (задержка срабатывания, количество и время впрыска топлива, направленность топливного распылителя)
  3. плавность работы, свободный ход, возвращение пружиной и необходимый уровень приоткрытия закрытой ДЗ
  4. работу системы холодного запуска (закрытие воздушной, и приоткрытие дросельной и воздушной заслонок)
  5. работу устройства открытия второй ДЗ (если имеется)
  6. работу поплавкового механизма (уровень топлива в поплавковой камере, герметичность запорного клапана, отсутствие дефектов поплавка, и т.д.)
  7. работу эмульсионных колодцев и распылителей, пропускная способность жиклёров
  8. отсутствие неучтённых подсосов воздуха

Так же на работу карбюратора оказывают своё влияние:

  1. механизмы управления карбюратором
  2. устройство подачи воздуха (воздушный фильтр, система подогрева воздуха в холодное время года)
  3. система подачи топлива (бензонасос, бензофильтры, заборник, топливные магистрали, вентиляция бака)
  4. система вентиляции картера двигателя
  5. сливная трубка избытка топлива, впускного коллектора
  6. герметичность впускного тракта после карбюратора
  7. негерметичность/неисправность клапанного механизма
  8. качество и состав топлива

Характеристики 

Работа двигателя определяется его мощностью, действенным давлением, крутящим моментом, скоростью и частотой вращения коленчатого вала и потребление топлива.

Мощность карбюраторного двигателя, а также его крутящий момент подчиняются скорости вращения коленвала и высоты давления.

Скоростная характеристика карбюраторного двигателя устанавливается наивысшей мощностью, которую реально получить от давления при разной частоте вращения коленвала.

При небольшой скорости движения коленчатого вала давление в цилиндрах невысокое и мощность двигателя, соответственно, тоже небольшая. При ускорении вращения коленвала и давление поднимается, так как горючая смесь сгорает быстрее.

Потребление топлива увеличивается при небольшой частоте вращения коленчатого вала, так как процесс сгорания проходит медленнее, теплоотдача большая, а при увеличении частоты вращения механические и тепловые затраты увеличиваются.

Скоростная характеристика дизельного двигателя определяется при недвижимой рейке топливного насоса, который дает высокую подачу топлива на конкретном режиме скорости и бездымной эксплуатации.

При заведенном двигателе автомобиля количество вращений коленвала меняется. Если беспричинно увеличивается потребление топлива, то происходит это благодаря ухудшению рабочего процесса двигателя.

Управление 

Обычно работой карбюратора управляет водитель автомобиля. На некоторых моделях карбюраторов использовались дополнительные системы, частично автоматизировавшие управление им.

Для управления дроссельной заслонкой на автомобилях обычно используется педаль газа. Она может приводить её в движение при помощи системы тяг или тросового привода. Тяги в целом надёжнее, но конструкция привода получается сложнее и ограничивает возможности конструктора по компоновке подкапотного пространства. Привод тягами широко использовался в прежние годы, но начиная с 1970-х годов получила распространение система с металлическим тросиком. Системы с пневмо- или электромеханическим приводом распространения на карбюраторных двигателях не получили.

На старых автомобилях часто предусматривалась двойная система привода дроссельной заслонки карбюратора: от руки, рычажком или вытяжной рукояткой («постоянный газ»), и от ноги — педалью. Ручное и ножное управления связывалось между собой так, что при нажатии на педаль рукоятка ручного управления остаётся неподвижной, а при её вытягивании педаль опускается. Дальнейшее открытие дросселя можно было производить педалью. При отпускании педали дроссель остаётся в положении, установленном ручным управлением. Например, на «Волге» ГАЗ-21 на панели приборов справа от радиоприёмника была расположена рукоятка ручного управления дроссельной заслонкой, дублирующая педаль газа. Вытянув её, можно было добиться устойчивой работы холодного двигателя без использования воздушной заслонки, или использовать для установления «постоянного газа». На грузовых автомобилях режим «постоянного газа» служил в частности для упрощения движения задним ходом.

На мотоциклах и некотором числе автомобилей применяется ручное управление дросселем, осуществляемое специальной рукояткой на руле через тросик.

Воздушная заслонка может иметь механический или автоматический привод. В первом случае её закрывает водитель при помощи рукоятки, размещённой обычно на панели приборов. Автоматический привод широко применялся за границей, а в практике отечественного автопрома распространения практически не получил ввиду низкой надёжности, недолговечности и ненадёжной работы при характерных для климата большей части территории СССР/России больших перепадах температур. В этом случае воздушную заслонку закрывал биметаллический или церезиновый термоэлемент, обогреваемый жидкостью из системы охлаждения. По мере прогрева двигателя, термоэлемент нагревался, расширялся и открывал воздушную заслонку. В иных системах использовался электромеханический привод с датчиком температуры. Из отечественных автомобилей, такое пусковое устройство имели только карбюраторы отдельных моделей ВАЗ.

Очень широко распространён полуавтоматический привод воздушной заслонки. В этом случае она закрывается водителем вручную, а после пуска двигателя автоматически приоткрывается диафрагмой, работающей от возникающего во впускном коллекторе двигателя разрежения. Это предотвращало возможную остановку двигателя из-за переобогащения рабочей смеси и несколько снижало расход топлива на прогрев. Пусковую диафрагму имели практически все отечественные карбюраторы, разработанные после начала 1960-х годов. До этого некоторые модели использовали менее совершенный кулачковый механизм, немного приоткрывавший дроссельную заслонку при закрывании воздушной.

Система питания карбюраторных двигателей

ПОХОЖИЕ СТАТЬИ:

  • Надежная и стабильная работа системы охлаждения двигателяНоябрь 8, 2017 Надежная и стабильная работа системы охлаждения двигателя
  • Инструменты, аксессуары и запасные части для автомобиляНоябрь 21, 2017 Инструменты, аксессуары и запасные части для автомобиля
  • Рама и тягово-сцепное устройство: описание,устройство,фото.Май 9, 2018 Рама и тягово-сцепное устройство: описание,устройство,фото.
  • Фольксваген каравелла Т6 2016 комплектации и цены обзор описание характеристики фото видео.Декабрь 2, 2016 Фольксваген каравелла Т6 2016 комплектации и цены обзор описание характеристики фото видео.
  • Опель вектра B технические характеристики фото видео обзор описание.Ноябрь 14, 2016 Опель вектра B технические характеристики фото видео обзор описание.
  • Opel Agila описание характеристики фото видео комплектация.Апрель 24, 2017 Opel Agila описание характеристики фото видео комплектация.
  • Mercedes-Benz S 63 AMG седан, 2013Апрель 11, 2017 Mercedes-Benz S 63 AMG седан, 2013
  • Системы охлаждения двигателя проблемы и неисправности фото описаниеМай 8, 2017 Системы охлаждения двигателя проблемы и неисправности фото описание
  • BMW Z8 технические характеристики фото видеоАпрель 30, 2017 BMW Z8 технические характеристики фото видео
  • Технические данные и эксплуатации Bugatti Veyron, произведенные в период с 2005 — 2015Май 19, 2017 Технические данные и эксплуатации Bugatti Veyron, произведенные в период с 2005 — 2015

seite1.ru

Карбюраторный двигатель: устройство и принцип работы

Карбюраторный двигатель по причине своих отличных эксплуатационных характеристик пользуется популярностью на протяжении длительного времени. Такие моторы сочетают простоту конструкции, надежность и ремонтопригодность. Особенностью силовых агрегатов данного типа является внешнее смесеобразование. Топливо смешивается с кислородом в карбюраторе и в последующем подается в камеру сгорания.

Фактически, карбюратор представляет собой устройство, где происходит приготовление топливной смеси за счёт смешивания жидкого топлива с воздухом.

Виды карбюраторов

  • В зависимости от способа образования смеси карбюраторы принято разделять на пульверизационные и испарительные. Первоначально популярностью пользовались испарительные модификации, однако впоследствии наибольшее распространение получили пульверизационные, которые обеспечивают максимально качественное разбрызгивание смеси в камере сгорания.
  • В зависимости от числа используемых смесительных камер принято выделять одно, двух и четырехкамерные модификации.
  • Также карбюраторы различаются в зависимости от способа и порядка открытия дроссельных заслонок. Так, заслонки в карбюраторах могут открываться принудительно и автоматически. При этом открытие заслонок на вторичной камере может проходить последовательно или параллельно. Всё это непосредственно влияет на конструкцию агрегата, обеспечивая приготовление качественной воздушно-топливной смеси и ее последующее полное сгорание в двигателе.
  • Наибольшей популярностью сегодня пользуются карбюраторы с нисходящим потоком и соответствующим направлением главного воздушного клапана.
  • Также существуют модификации карбюраторов с горизонтальным и восходящим воздушным потоком. Однако подобные разновидности по причине сложной конструкции не получили сегодня должного распространения и встречаются крайне редко.
  • В зависимости от типа камеры принято разделять барботажные, мембранно-игольчатые, поплавковые. На сегодняшний день барботажные карбюраторы уже не используются, а вот мембранно-игольчатые и поплавковые все еще распространены. Мембранные разновидности состоят из нескольких камер, которые соединяются игольчатым клапаном. Именно открытие и закрытие клапанов позволяет регулировать объем поступающей топливной смеси. Поплавковые разновидности имеют одну камеру сгорания с установленным внутри поплавком. Именно такой поплавок и регулирует работу запорного клапана, позволяя поддерживать постоянный уровень топлива в камере.

Устройство карбюратора

Несомненным преимуществом карбюратора является его простота конструкции, он состоит из двух элементов: поплавковой камеры 10 и смесительной камеры 8.

Топливо под давлением по трубке 1 подается в поплавковую камеру 10, где находится поплавок 3 и запорная игла 2. Такая игла фактически является простейшим клапаном, который регулирует уровень топлива в камере. Наличие такого клапана позволяет обеспечить постоянный уровень топлива в поплавковой камере в процессе работы двигателя, а, следственно, подача бензина в цилиндры осуществляется равномерно. А благодаря балансировочному отверстию (4) в поплавковой камере поддерживается атмосферное давление.

Затем топливо поступает через жиклёр 9 в распылитель 7. При этом количество топлива, которое выходит из распылителя, зависит от степени вакуума, образовавшегося в диффузоре и диаметре проходящего отверстия в жиклере.

При впуске давление в цилиндрах уменьшается. Воздух из окружающей среды поступает в цилиндр через смесительную камеру 8, где расположен диффузор 6 (трубка Вентури), и впускной трубопровод, который распределяет готовую смесь по цилиндрам.

Распылитель находится в самой узкой части диффузора, где, по закону Бернулли, скорость потока достигает мах значения, а давление падает до мin значения. Выход топлива из распылителя осуществляется за счёт разности давлений.

Управление карбюратором и дроссельной заслонкой 5 может выполняться исключительно механически через связь с педалью газа, так и различными автоматическими системами, которые устанавливались на поздних модификациях в карбюраторных двигателях. Наибольшее распространение получила система управления карбюратором с металлическим тросом, которая отличается простотой конструкции и надежностью.

Подача воздуха происходит путем открытия и закрытия воздушной заслонки. Такая заслонка на большинстве двигателей имеет полуавтоматических ход. В процессе эксплуатации работа используемой воздушной заслонки может нарушаться, что приводит к переобогащению смеси или ее обеднению. Именно поэтому в ходе эксплуатации такого карбюраторного двигателя необходимо регулярно производить осмотр и соответствующую регулировку воздушной заслонки и всего карбюратора.

Одной из разновидностей карбюраторов являются эмульсионные варианты, в которых в распылитель поступает уже не жидкое топливо, а эмульсия, полученная из воздуха и топлива. Считается, что эмульсионные карбюраторы обеспечивают максимальный коэффициент полезного действия, что достигается за счёт улучшенного распыления бензина в воздушной смеси.

Регулировка карбюратора

Карбюраторный двигатель отличается простотой конструкции, однако подобная система впрыска топлива неизменно требует исправной работы всех механизмов и узлов. Нарушение настройки карбюратора, а подобные проблемы неизменно возникают в процессе эксплуатации этого механизма, приводят к ухудшению приемлемости, экономичности, при этом отмечается увеличение показателей токсичности отработанных газов. Именно поэтому нужно пристально следить за состоянием работы карбюратора и при необходимости вносить соответствующие корректировки.

Автовладельцу при эксплуатации автомобиля с карбюраторным агрегатом доступно две регулировки путем изменения положения винта количества и винта качества. Винт количества отвечает за показатель оборотов на холостом ходу. Тогда как изменение положения винта качества позволяет регулировать степень обогащения топливно-воздушной смеси.

В редких случаях могут отмечаться серьезные поломки, в особенности при появлении неучтенного подсоса воздуха или же нарушении герметичности клапана и системы холостого хода. Всё это приводит к необходимости диагностики и ремонта карбюратора силами специалистов сервисного центра.

Преимущества и недостатки

Преимущества:

  • Если говорить о преимуществах карбюратора, то можем отметить простоту конструкции и надежность. В такой системе питания используются простые механизмы, которые управляются механически и практически не имеют подвижных частей. Фактически, ломаться в карбюраторе нечему, поэтому подобный узел отличается надежностью и долговечностью.
  • Если сравнивать карбюраторный мотор с инжекторным, то из преимуществ можно отметить лучшую работу при низких температурах и устойчивый запуск в жару и холод. Регулировка карбюратора не представляет сложности. Имеется два винта, изменение положения которых позволит внести необходимые корректировки в работу силового агрегата.

Однако и недостатки у двигателей данного типа всё же имеются:

  • В первую очередь это зависимость работы силового агрегата от качества топлива. При наличии в бензине липучих посторонних примесей, может забиваться распылитель, что приводит к неровной работе силового агрегата.
  • Следует сказать, что в сравнении с инжектором карбюраторные моторы существенно проигрывают в вопросах мощности. Карбюратор не способен обеспечить качественное разбрызгивание топлива в камере сгорания, соответственно в сравнении с инжектором такой мотор будет иметь увеличенный расход топлива, а также меньшие показатели мощности с одинакового объема.
  • В простоте карбюраторных двигателей кроются как преимущества, так и недостатки. Если в инжекторе можно внести программой какие-либо изменения в работу силового агрегата, то у карбюратора какая-либо регулировка работы системы питания двигателя существенно затруднена.

На сегодняшний день карбюраторные двигатели практически полностью вытеснены инжекторными агрегатами, которые отличаются улучшенными динамическими и топливно-экономическими показателями работы. Впрочем, многие автовладельцы по достоинству оценили простоту и надежность карбюраторных двигателей и с удовольствием используют машины с таким типом силовых агрегатов и по сей день.

dvigatels.ru

Причины повышенного расхода топлива на автомобилях. Карбюраторный двигатель

Чрезмерное потребление топлива двигателем автомобиля – это неприятный и чувствительный «удар» по кошельку. Поэтому каждый автовладелец внимательно следит за расходом бензина, прикидывая, на сколько километров хватит полного бака после очередной заправки.

Как оценить реальный расход топлива? Владельцы современных авто, оснащенных многочисленными электронными датчиками, могут частично полагаться на показания бортового компьютера. На старых автомобилях с карбюраторными ДВС такие датчики встречаются намного реже. Поэтому единственный способ узнать более-менее точный расход топлива на авто с карбюраторным двигателем – это сделать замеры самостоятельно.

Чтобы точно замерить расход бензина, необходимо на АЗС заполнить бак «до отсечки», сбросить на ноль показания одометра и проехать отрезок пути длиной от нескольких десятков до сотни километров (чем больше проедете, тем точнее будет результат). Двигаться по шоссе следует со средней скоростью около 90 км/ч, избегая резких ускорений и торможений. Замеры следует проводить на участке трассы без резких перепадов рельефа. После поездки снова долейте бак «до отсечки». Объем бензина, потраченного на поездку, умножьте на 100 и поделите на проделанное расстояние, чтобы узнать расход в литрах на 100 км пути. Если полученный расход существенно отличается от паспортного, то это причина заняться поиском неисправностей в работе двигателя и других систем вашего авто.

Косвенные признаки чрезмерного расхода бензина двигателем

О повышенном расходе топлива владельцы автомобилей с карбюраторными двигателями могут также узнать по ряду косвенных признаков, которые четко сигнализируют о том, что бензин в цилиндрах сгорает не полностью.

  • Нагар на свечах. Темный нагар на электродах свечей зажигания – это несгоревшие остатки топлива. Они появляются, если в цилиндры попадает слишком богатая топливовоздушная смесь. В такой смеси недостаточно воздуха для того, чтобы бензин сгорел полностью, без остатков. Это означает, что некоторая часть топлива расходуется напрасно и выбрасывается через выпускные клапаны, не выполняя никакой полезной работы.
  • Хлопки в глушителе. Резкие звуки (хлопки или «выстрелы»), которые слышатся в выпускной системе во время работы двигателя, означают, что в глушителе происходит взрывное сгорание топлива. Несгоревшие остатки топлива, вытолкнутые поршнями из цилиндров, попадают в выпускную систему. Получив порцию кислорода из воздуха, проникающего в систему выпуска отработавших газов через негерметичные стыки и соединения, бензин догорает с громким хлопком.
  • Черный дым из выхлопной трубы. В отличие от дизелей, для карбюраторных двигателей черный цвет выхлопных газов – это ненормальное явление. По этому признаку можно понять, что топливо в цилиндрах сгорает не полностью. Кроме черного цвета, о перерасходе топлива четко сигнализирует устойчивый запах бензина в районе выхлопной трубы.
  • Повышенные обороты холостого хода. Если на холостом ходу частота вращения коленчатого вала превышает значение, указанное в инструкции по эксплуатации авто, это означает, что в цилиндры попадает больше топлива, чем следует. Причины могут быть разными, но для нормальной работы двигателя их обязательно нужно устранить.

Типичные причины перерасхода топлива на автомобилях с карбюраторными двигателями

По перечисленным выше признакам понятно, что основная причина повышенного расхода топлива – это чрезмерное обогащение топливовоздушной смеси, попадающей в цилиндры двигателя. Это может быть вызвано целым рядом технических причин. Некоторые из них легко устранить самостоятельно, а другие требуют вмешательства механика-моториста.

Самые очевидные причины чрезмерного потребления топлива двигателем:

  • неправильная настройка карбюратора – регулировкой винтов «количества» и «качества» можно настроить карбюратор таким образом, чтобы в смеси было оптимальное соотношение воздуха и топлива;
  • неполное открытие воздушной заслонки – прикрытая заслонка не пропускает достаточно воздуха. Следует проверить ее положение и, если понадобится, отрегулировать привод заслонки;
  • переполнение поплавковой камеры – негерметичный игольчатый клапан может пропускать слишком много топлива в поплавковую камеру. Если он «не держит», клапан необходимо заменить исправным;
  • засорение – засоренные жиклеры главной дозирующей системы и воздушный фильтр двигателя физически не могут пропустить требуемое количество воздуха. Необходимо заменить фильтрующий элемент, забитый пылью, и прочистить отверстия каналов воздушных жиклеров.

У повышенного расхода топлива могут быть и другие технические причины, никак не связанные непосредственно с карбюратором:

  • Естественный износ двигателя приводит к постепенному падению компрессии в цилиндрах, из-за которого бензин сгорает не полностью.
  • Неисправная или засоренная система охлаждения может привести к перегреву двигателя. При перегреве ухудшается наполнение цилиндров топливовоздушной смесью, создаются условия для детонации, увеличиваются потери на трение.
  • Неправильно выставленный угол опережения зажигания («позднее» или «раннее» зажигание) однозначно отрицательно влияет на топливную экономичность двигателя.
  • Негерметичные соединения топливной системы автомобиля приводят к тому, что часть топлива теряется еще до того, как попадет из бака в бензонасос.

Нетехнические причины перерасхода топлива

Во многих случаях чрезмерный топливный «аппетит» двигателя никак не связан с техническими неисправностями. Например, некоторые водители отличаются агрессивной манерой вождения. Резкие ускорения и торможения, переход на пониженные передачи и движение с неоптимальной скоростью приводят к тому, что двигатель потребляет больше бензина, чем следует.

Но ничуть не реже бывает, что перерасход бензина вызван низким качеством топлива на автозаправках. Если характеристики топлива не соответствуют требованиям ГОСТа, то бензин не будет полностью сгорать в цилиндрах. Поэтому следует заправляться хорошим топливом на проверенных АЗС, которые предоставляют сертификаты, подтверждающие качество бензина.

 

Марк Брюлов

blog.extrafuel.ru

Карбюраторный двигатель - это... Что такое Карбюраторный двигатель?

Четырехтактный бензиновый карбюраторный двигатель автомобиля «Волга»

Карбюраторный двигатель - один из типов двигателя внутреннего сгорания с внешним смесеобразованием и автономным зажиганием[1].

В карбюраторном двигателе в цилиндры двигателя поступает готовая топливовоздушная смесь, приготавливаемая чаще всего в карбюраторе, давшем название типу двигателя, либо в газовоздушном смесителе, либо образующаяся при впрыске топлива, распыленного специальной форсункой, в поток всасывающегося воздуха - такие двигатели называются впрысковыми или инжекторными.

Независимо от способа смесеобразования и количества тактов в рабочем цикле карбюраторные двигатели имеют одинаковый принцип работы, а именно: сжатая в камере сгорания горючая смесь в определенный момент поджигается системой зажигания, чаще всего электроискровой.

Может также использоваться зажигание смеси от калильной трубки, в настоящее время в основном в дешевых малогабаритных двигателях, например, на авиамоделях; плазменное, лазерное зажигание - в настоящее время в состоянии, скорее, экспериментальных разработок.

Карбюраторные двигатели по количеству тактов в рабочем цикле делятся на четырехтактные, или двигатели Отто, у которых рабочий цикл состоит из четырех тактов и включает четыре полуоборота коленвала, и двухтактные, рабочий цикл которых включает два полуоборота коленвала с одновременным протеканием разных тактов одновременно. Последние, благодаря относительной простоте конструкции, получили широкое распространение как двигатели для мотоциклов и разнообразных агрегатов, требующих простоты и дешевизны конструкции - бензопилах, мотокультиваторах, как пусковые двигатели для более мощных дизелей и т. д.

Карбюраторные двигатели разделяются на атмосферные, у которых впуск воздуха или горючей смеси осуществляется только за счет разрежения в цилиндре при всасывающем ходе поршня и двигатели с наддувом, у которых впуск воздуха или горючей смеси в цилиндр происходит под давлением, создаваемым специальным компрессором, с целью увеличения рабочего заряда в том же рабочем объеме и получения повышенной мощности двигателя.

Двухтактный карбюраторный двигатель 2СД-М1, работающий на смеси бензина и моторного масла (25:1). Карбюратор справа

В качестве топлива для карбюраторного двигателя в разное время применялись спирт[2], светильный газ, пропан-бутановая смесь, этиловый спирт, керосин, лигроин, бензин и их смеси. Наибольшее распространение получили бензиновые и газовые карбюраторные двигатели.

См. также

Примечания

  1. ↑ Большая Cоветская Энциклопедия. Гл. ред. А. М. Прохоров, 3-е изд. Т. 11. Италия — Кваркуш. 1973. 608 стр., илл.; 39 л. илл. и карт. 1 карта-вкл. (стб. 1215)
  2. ↑ Большая Cоветская Энциклопедия. Гл. ред. Б. А. Введенский, 2-е изд. Т. 20. Кандидат — Кинескоп. 1953. 644 стр., илл.; 55 л. илл. и карт. (стр. 155)

dic.academic.ru

Карбюраторный двигатель Википедия

Четырехтактный бензиновый карбюраторный двигатель автомобиля «Волга» ЗМЗ-24

Карбюраторный двигатель - один из многих типов двигателей внутреннего сгорания с внешним смесеобразованием и автономным зажиганием[1].

В карбюраторном двигателе в цилиндры двигателя поступает готовая топливовоздушная смесь, приготавливаемая чаще всего в карбюраторе, давшем название типу двигателя, либо в газовоздушном смесителе, либо образующаяся при впрыске топлива, распыленного специальной форсункой, в поток всасывающегося воздуха - такие двигатели называются впрысковыми или инжекторными.

Независимо от способа смесеобразования и количества тактов в рабочем цикле карбюраторные двигатели имеют одинаковый принцип работы, а именно: сжатая в камере сгорания горючая смесь в определенный момент поджигается системой зажигания, чаще всего электроискровой. Может также использоваться зажигание смеси от калильной трубки, в настоящее время в основном в дешевых малогабаритных двигателях, например, на авиамоделях; плазменное, лазерное зажигание - в настоящее время в состоянии, скорее, экспериментальных разработок.

Карбюраторные двигатели по количеству тактов в рабочем цикле делятся на четырехтактные, или двигатели Отто, у которых рабочий цикл состоит из четырех тактов и включает четыре полуоборота коленвала, и двухтактные, рабочий цикл которых включает два полуоборота коленвала с одновременным протеканием разных тактов. Последние, благодаря относительной простоте конструкции, получили широкое распространение как двигатели для мотоциклов и разнообразных агрегатов, требующих простоты и дешевизны конструкции - бензопилах, мотокультиваторах, как пусковые двигатели для более мощных дизелей и т. д.

Карбюраторные двигатели разделяются на атмосферные, у которых впуск воздуха или горючей смеси осуществляется только за счет разрежения в цилиндре при всасывающем ходе поршня и двигатели с наддувом, у которых впуск воздуха или горючей смеси в цилиндр происходит под давлением, создаваемым специальным компрессором, с целью увеличения рабочего заряда в том же рабочем объеме и получения повышенной мощности двигателя.

Двухтактный карбюраторный двигатель 2СД-М1, работающий на смеси бензина и моторного масла (25:1). Карбюратор справа

В качестве топлива для карбюраторного двигателя в разное время применялись спирты[2], светильный газ, пропан-бутановая смесь, керосин, лигроин, бензин и их смеси. Наибольшее распространение получили бензиновые и газовые карбюраторные двигатели.

См. также

Примечания

  1. ↑ Большая Советская Энциклопедия. Гл. ред. А. М. Прохоров, 3-е изд. Т. 11. Италия — Кваркуш. 1973. 608 стр., илл.; 39 л. илл. и карт. 1 карта-вкл. (стр. 1215)
  2. ↑ Большая Советская Энциклопедия. Гл. ред. Б. А. Введенский, 2-е изд. Т. 20. Кандидат — Кинескоп. 1953. 644 стр., илл.; 55 л. илл. и карт. (стр. 155)

wikiredia.ru