Способ работы испарителя топлива и испаритель топлива двигателя внутреннего сгорания (варианты). Испаритель бензина


Способ работы испарителя топлива и испаритель топлива двигателя внутреннего сгорания (варианты)

 

Использование: устройства для подготовки и подачи топлива в двигатель внутреннего сгорания и способ их работы. Топливо подают в зону испарения для разделения на газообразную и жидкую фракции из слоев пористой структуры металлокерамического блока, представляющего собой испарительное устройство. Для разделения на фракции топливо нагревают энергией фазового перехода теплоносителя из жидкого в газообразное состояние, подогревая теплоноситель. Отработавшие газы двигателя внутреннего сгорания используют для подогрева теплоносителя. Раскрыты два варианта выполнения испарителя топлива. Технический результат: снижение расхода топлива. 3 с.п.ф-лы, 2 ил.

Изобретение относится к машиностроению, а именно к двигателестроению, в частности к устройствам для подготовки и подачи топлива в двигатель внутреннего сгорания (ДВС) и способам их работы.

Известен способ работы тепловой трубы путем подачи тепла от внешнего источника к зоне испарения тепловой трубы для нагрева теплоносителя до температуры кипения (испарения), тепломассопереноса по зоне трансформирования тепловой трубы, конденсирования паров теплоносителя в зоне конденсации тепловой трубы и возврата теплоносителя в зону испарения. При этом зону конденсации тепловой трубы, оснащенную ребрами, нагревают энергией фазового перехода теплоносителя из жидкого в газообразное состояние (см. авторское свидетельство СССР N 951059, М.кл. F 28 D 15/00).

Основным недостатком описанного способа работы тепловой трубы является необходимость использования подвода теплоты от внешнего источника.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому изобретению является способ работы испарителя топлива ДВС путем подачи топлива в зону испарения. Топливо нагревают энергией фазового перехода теплоносителя из жидкого в газообразное состояние, подогревая теплоноситель. Для подогрева теплоносителя используют отработавшие газы двигателя внутреннего сгорания (см. патент РФ N 2002096, МПК F 02 M 31/087).

Основным недостатком способа работы испарителя топлива является повышенный расход топлива вследствие малой площади испарения капиллярно-пористой структурой.

Известна тепловая труба с испарительным, транспортным и конденсационным участками теплоносителя. Испарительный уча сток связан с внешним источником теплоты. Конденсационный участок снабжен полыми ребрами (см. авторское свидетельство СССР N 951059, М.кл. F 28 D 15/00).

Основным недостатком этой тепловой трубы является пониженная теплоотдача вследствие выполнения конденсационного участка с полыми ребрами, что приводит к скоплению в них конденсата.

Наиболее близкой по технической сущности и достигаемому результату к предлагаемому изобретению (прототипом) является испарительная горелка, содержащая испарительную камеру, выполненную в виде термосифона с паровым и конденсационным участками теплоносителя, испарительное устройство с наружными стенками, размещенное в верхней части испарительной камеры, патрубок отвода газообразной фракции топлива, соединенный с верхней частью испарительного устройства и соплами для подачи испаренного топлива, патрубок отвода жидкой фракции топлива, соединенный с нижней частью испарительного устройства и соплами для подачи жидкого топлива, патрубок регулирования подачи топлива, связанный с патрубком отвода газообразной фракции, подключенным к испарительному устройству, и с механизмом регулирования подачи топлива, систему подачи топлива, подсоединенную к испарительному устройству посредством змеевика. Испарительное устройство выполнено в виде разделительной емкости с размещенными внутри сепарационной вставкой и поплавковым клапаном. Механизм регулирования подачи топлива выполнен в виде сильфона, связанного с подпружиненным рычагом и регулировочным винтом. Подпружиненный рычаг в свою очередь прикреплен к смесительной головке. Над смесительной головкой друг над другом установлены перфорированные конусы с буртиками. Сопла для подачи жидкого топлива размещены над конусами. Нагрев термосифона осуществляется от тепла горелки (см. авторское свидетельство СССР N 1464011, М.кл4 F 23 D 5/04).

Основным недостатком описанной испарительной горелки является повышенный расход топлива вследствие поступления его жидкой фракции в зону горения, так как испарительное устройство выполнено в виде разделительной емкости с сепарационной вставкой.

Известна тепловая труба с испарительным транспортным и конденсационным участками теплоносителя. Испарительный участок связан с внешним источником теплоты. Конденсационный участок снабжен полыми ребрами (см. авторское свидетельство СССР N 951059, М.кл. F 28 D 15/00) Основными недостатками этой тепловой трубы являются большие затраты времени на испарение теплоносителя, так как испарительный участок функционирует в стационарном режиме, а также отсутствие возможности регулирования теплоотдачи.

Наиболее близкой по технической сущности и достигаемому результату к предлагаемому изобретению (прототипом) является испарительная горелка, содержащая испарительную камеру, выполненную в виде термосифона с паровым и конденсационным участками теплоносителя, испарительное устройство с наружной стенкой, размещенное в верхней части испарительной камеры, патрубок отвода газообразной фракции топлива, соединенный с верхней частью испарительного устройства и соплами для подачи испаренного топлива, патрубок отвода жидкой фракции топлива, соединенный с нижней частью испарительного устройства и соплами для подачи жидкого топлива, систему подачи топлива, подсоединенную к испарительному устройству посредством змеевика. Патрубок отвода газообразной фракции подключен к сильфону, связанному с подпружиненным рычагом и регулировочным винтом. Подпружиненный рычаг в свою очередь прикреплен к смесительной головке. Над смесительной головкой друг над другом установлены перфорированные конусы с буртиками. Сопла для подачи жидкого топлива размещены над конусами. Испарительное устройство выполнено в виде разделительной емкости с размещенными внутри сепарационной вставкой и поплавковым клапаном. Нагрев термосифона осуществляется от тепла горелки (см. авторское свидетельство СССР N 1464011, М.кл4 F 23 D 5/04).

Основными недостатками описанной испарительной горелки являются повышенный расход топлива вследствие поступления его жидкой фракции в зону горения, так как испарительное устройство выполнено в виде разделительной емкости с сепарационной вставкой, и отсутствие регулировки подачи топлива, так как использование сильфона для регулирования теплоотдачи способствует инерционности работы испарительной горелки.

Сущность изобретения заключается в том, что в способе работы испарителя топлива ДВС путем подачи топлива в зону испарения, причем топливо нагревают энергией фазового перехода теплоносителя из жидкого в газообразное состояние, подогревая теплоноситель, для подогрева теплоносителя используют отработавшие газы двигателя внутреннего сгорания, а топливо подают в зону испарения для разделения на газообразную и жидкую фракции из слоев пористой структуры металлокерамического блока, представляющего собой испарительное устройство.

Сущность изобретения заключается также в том, что в испарителе топлива ДВС, содержащем испарительную камеру, выполненную в виде термосифона с паровым и конденсационным участками теплоносителя, испарительное устройство с наружными стенками, размещенное внутри этой камеры, патрубки отвода газообразной и жидкой фракций топлива, соединенные с испарительным устройством, патрубок регулирования подачи топлива, связанный с механизмом регулирования подачи топлива и испарительным устройством, систему подачи топлива, подключенную к испарительному устройству, испарительное устройство выполнено в виде секционного пористого металлокерамического блока, патрубок регулирования подачи топлива - в виде трубчатых элементов, связанных с секциями пористого металлокерамического блока, механизм регулирования подачи топлива подсоединен к акселератору и дроссельной заслонке, размещенной в патрубке отвода газообразной фракции топлива. При этом испаритель топлива дополнительно снабжен устройством для подвода отработавших газов к испарительной камере, а система подачи топлива подключена к исправительному устройству патрубком отвода жидкой фракции топлива.

Сущность изобретения заключается так же в том, что в испарителе топлива ДВС, содержащем испарительную камеру, выполненную в виде термосифона с паровым и конденсационным участками теплоносителя, испарительное устройство с наружной стенкой, размещенное внутри этой камеры, патрубки отвода газообразной и жидкой фракций топлива, соединенные с испарительным устройством, систему подачи топлива, подключенную к испарительному устройству, испарительное устройство, осесимметрично размещенное внутри испарительной камеры с возможностью вращения вокруг своей оси, выполнено в виде конической пористой металлокерамической трубы, соединенной сужающей частью с патрубком отвода газообразной фракции топлива и установленной коаксиально наружной стенке. При этом испаритель топлива дополнительно снабжен устройством для подвода отработавших газов к испарительной камере, а система подачи топлива подключена к испарительному устройству патрубком отвода жидкой фракции топлива.

Техническим результатом является снижение расхода топлива.

Снижение расхода топлива обеспечивается за счет расширения площади испарения пористой структурой металлокерамического блока и введением в испарители топлива ДВС устройства для подвода отработавших газов к испарительной камере.

Кроме этого, выполнение испарительного устройства в виде пористой структуры - секционного пористого металлокерамического блока или конической пористой металлокерамической трубы - позволит обеспечить большую площадь контакта жидкой фракции топлива с нагреваемой поверхностью, и, следовательно, его эффективное испарение.

Соединение патрубка отвода жидкой фракции топлива с системой подачи топлива устраняет возможность поступления жидкой фракции топлива в камеру сгорания ДВС, что обеспечивает экономичную работу ДВС.

Выполнение испарительного устройства с возможностью вращения вокруг своей оси обеспечивает небольшие затраты времени на испарение топлива.

Выполнение патрубка регулирования подачи топлива в виде трубчатых элементов, связанных с секциями пористого металлокерамического блока, при соединении механизма регулирования подачи топлива с акселератором и дроссельной заслонкой, в одной предлагаемой конструкции испарителя топлива ДВС, и выполнение испарительного устройства с возможностью вращения вокруг своей оси с обеспечением возможности изменения угловой скорости вращения в другой предлагаемой конструкции испарителя топлива ДВС позволит изменять подачу топлива внутрь испарительного устройства.

Конструкции предлагаемых испарителей топлива ДВС поясняются чертежом, где на фиг.1 изображен испаритель топлива ДВС с испарительным устройством в виде секционного пористого металлокерамического блока и системой регулирования подачи топлива, на фиг.2 - испаритель топлива ДВС с испарительным устройством в виде вращающейся конической пористой металлокерамической трубы.

Испаритель топлива ДВС (см. фиг. 1) содержит испарительную камеру 1, выполненную в виде двухфазного термосифона с паровым 2 и конденсационным 3 участками теплоносителя 4, например воды. Внутри испарительной камеры 1 размещено испарительное устройство 5 с наружными стенками 6, выполненное в виде секционного пористого металлокерамического блока, изготовленного, например, по технологии самораспространяющегося высокотемпературного синтеза. С испарительным устройством 5 соединены патрубок 7 отвода газообразной фракции топлива в цилиндры ДВС (на чертеже не показаны), патрубок 8 отвода жидкой фракции топлива, подключенный к топливному баку 9, и патрубок 10 регулирования подачи топлива, связанный с механизмом 11 регулирования подачи топлива. Патрубок 10 регулирования подачи топлива выполнен в виде трубчатых элементов, соединенных с секциями пористого металлокерамического блока. Механизм 11 регулирования подачи топлива выполнен в виде крана, например, трехходового, подключенного связью управления 12, например механической, к дроссельной заслонке 13, размещенной в патрубке 7 отвода газообразной фракции топлива, а также подсоединенного, например, механической связью, к педали акселератора (на чертеже не показаны).

Система подачи топлива содержит топливный бак 9, соединенный с насосом 14, ресивером 15 и механизмом 11 регулирования подачи топлива трубопроводами 16 и 17 соответственно, а также связанный с испарительным устройством 5 патрубком 8 отвода жидкой фракции топлива. В качестве топлива может быть использован метанол.

Трубопровод 18 предназначен для подачи топлива от механизма 11 регулирования подачи топлива через патрубок 10, выполненный в виде трубчатых элементов, к секциям пористого металлокерамического блока испарительного устройства 5.

Кроме этого, испаритель топлива ДВС снабжен устройством 19 для подвода отработавших газов ДВС к испарительной камере 1, нагревающим теплоноситель 4.

Испаритель топлива ДВС с испарительным устройством в виде секционного пористого металлокерамического блока и системой регулирования подачи топлива работает следующим образом. Топливо из бака 9 насосом 14 по трубопроводу 16 подается в ресивер 15, где поддерживается рабочее давление, и по трубопроводу 17 - к крану. Кран, например, трехходовой, механизма 11 регулирования подачи топлива в зависимости от положения педали акселератора посредством связи управления 12 включает в работу одновременно одну или несколько секций пористого металлокерамического блока, представляющего собой испарительное устройство 5, путем подачи топлива по трубопроводу 18 и патрубку 10, выполненному в виде трубчатых элементов, к испарительному устройству 5. Испарение топлива осуществляется из слоев пористой структуры металлокерамического блока испарительного устройства 5, нагреваемых через стенки 6 газообразной фазой теплоносителя 4, т.е. на паровом участке 2 теплоносителя 4. Газообразная фракция топлива выходит из испарительного устройства 5 и по патрубку 7, минуя дроссельную заслонку 13, подается в цилиндры ДВС. Теплоноситель 4 нагревается отработавшими газами, поступающими к испарительной камере 1 по устройству 19 для подвода отработавших газов ДВС, до температуры парообразования. В свою очередь газообразная фаза теплоносителя 4 на паровом участке 2 нагревает через стенки 6 топливо, находящееся в испарительном устройстве 5, выполненном в виде секционного пористого металлокерамического блока, до температуры выше конечной температуры кипения (испарения). Пар теплоносителя 4 конденсируется на стенках 6, отдавая теплоту фазового перехода топливу. Неиспарившаяся часть жидкой фракции топлива из испарительного устройства 5 через патрубок 8 возвращается в топливный бак 9.

Испаритель топлива ДВС (см. фиг. 2) содержит испарительную камеру 1, выполненную в виде двухфазного термосифона с паровым 2 и конденсационным 3 участками теплоносителя 4, например воды. Внутри испарительной камеры 1 осесимметрично ей размещено испарительное устройство 5 с наружной стенкой 6, выполненное в виде конической пористой металлокерамической трубы, изготовленной, например, по технологии самораспространяющегося высокотемпературного синтеза. Коническая пористая металлокерамическая труба установлена коаксиально наружной стенке 6 и соединена сужающейся частью с патрубком 7 отвода газообразной фракции топлива в цилиндры ДВС (на чертеже не показаны). Патрубок 8 отвода жидкой фракции топлива подключен к топливному баку 9 и к испарительному устройству 5.

Система подачи топлива содержит топливный бак 9, соединенный с насосом 14 и ресивером 15 трубопроводами 16 и 17 соответственно, а также связанный с испарительным устройством 5 патрубком 8 отвода жидкой фракции топлива. В качестве топлива может быть использован метанол.

Испаритель топлива ДВС также снабжен устройством 19 для подвода отработавших газов ДВС к испарительной камере 1, нагревающим теплоноситель 4.

Испарительное устройство 5 выполнено с возможностью вращения вокруг своей оси в подшипниках 20 посредством двигателя, например электродвигателя (на чертеже не показан), связанного со шкивом 21. Изготовление пористой металлокерамической трубы конической формы позволяет равномерно по длине распределить поступающее топливо. При этом количество топлива будет возрастать пропорционально увеличению оборотов вращения трубы.

Испаритель топлива ДВС с испарительным устройством в виде вращающейся конической пористой металлокерамической трубы работает следующим образом. Топливо из бака 9 насосом 14 по трубопроводу 16 подается в ресивер 15, где поддерживается рабочее давление, и далее по трубопроводу 17 - в полость конической пористой металлокерамической трубы, представляющей собой испарительное устройство 5. При вращении конической пористой металлокерамической трубы в подшипниках 20 от двигателя посредством шкива 21 топливо равномерно распределяется в объеме ее пористой структуры. При нагреве наружной стенки 6 и конической пористой металлокерамической трубы, представляющей собой испарительное устройство 5, установленное коаксиально наружной стенке 6, за счет энергии фазового перехода теплоносителя 4 из жидкого в газообразное состояние осуществляется испарение топлива, пары которого поступают в патрубки 7 отвода газообразной фракции, а затем - в цилиндры двигателя внутреннего сгорания. Нагрев внешней поверхности наружной стенки 6 и конической пористой металлокерамической трубы производится за счет энергии фазового перехода теплоносителя 4 из жидкого в газообразное состояние при вращении этой трубы. Жидкая фаза теплоносителя 4 за счет центробежных сил размещается на внутренней поверхности испарительной камеры 1 и нагревается вследствие утилизации остаточной энергии отработавших газов ДВС, поступающих внутрь устройства 19 для подвода отработавших газов. Неиспарившаяся часть жидкой фракции топлива из испарительного устройства 5 через патрубок 8 возвращается в топливный бак 9.

Способ работы испарителя топлива осуществляется следующим образом. Топливо подают в зону испарения для разделения на газообразную и жидкую фракции. Топливо для разделения на фракции нагревают энергией фазового перехода теплоносителя из жидкого в газообразное состояние, подогревая теплоноситель в испарительной камере до температуры парообразования. Для подогрева теплоносителя используют отработавшие газы ДВС. Испарение нагретого топлива осуществляется в зоне испарения из слоев пористой структуры испарительного устройства. Таким образом, топливо нагревают до температуры выше конечной температуры испарения (парообразования) газообразной фазой теплоносителя вследствие того, что пар теплоносителя конденсируется на наружных стенках испарительного устройства, отдавая теплоту фазового перехода топливу. Далее газообразную фракцию топлива подают в цилиндры ДВС, а неиспарившуюся часть жидкой фракции топлива после его подачи в зону испарения возвращают в эту зону.

Примеры конкретного выполнения способа.

Способ работы испарителя топлива с испарительным устройством в виде секционного пористого металлокерамического блока и системой регулирования подачи топлива реализуется следующим образом (см. фиг. 1). Топливо подают в зону испарения, образованную испарительным устройством 1, выполненным в виде секционного пористого металлокерамического блока, из топливного бака 9 посредствам насоса 14, ресивера 15, трубопроводов 16 и 17, через механизм 11 регулирования подачи топлива в зависимости от положения педали акселератора посредством связи управления 12, трубопровод 18 и патрубок 10, выполненный в виде трубчатых элементов. В зону испарения топливо подают для разделения на газообразную и жидкую фракции из слоев пористой структуры металлокерамического блока, представляющего собой испарительное устройство 5. Топливо для разделения на фракции нагревают энергией фазового перехода теплоносителя 4 из жидкого в газообразное состояние, подогревая теплоноситель 4 в испарительной камере 1 до температуры парообразования. Для подогрева теплоносителя 4 используют отработавшие газы ДВС, поступающие к испарительной камере 1, выполненной в виде двухфазного термосифона с паровым 2 и конденсационным 3 участками теплоносителя, посредством устройства 19 для подвода отработавших газов к испарительной камере. Испарение нагретого топлива осуществляется в зоне испарения из слоев пористой структуры испарительного устройства 5.

Далее газообразную фракцию топлива подают патрубком 7 в цилиндры ДВС, минуя дроссельную заслонку 13. Неиспарившуюся часть жидкой фракции топлива после его подачи в зону испарения возвращают в эту зону через патрубок 8, соединенный с топливным баком 9, систему подачи топлива и механизм 11 регулирования подачи топлива.

Таким образом, нагрев топлива, например метанола, до температуры выше конечной температуры испарения (парообразования) газообразной фазой теплоносителя 4 осуществляют за счет того, что пар теплоносителя 4, нагретого отработавшими газами ДВС, конденсируется на наружных стенках 6 испарительного устройства 5, отдавая топливу теплоту фазового перехода.

Способ работы испарителя топлива с испарительным устройством в виде вращающейся конической пористой металлокерамической трубы (см. фиг. 2) реализуется следующим образом. Топливо подают в зону испарения, образованную испарительным устройством 1, осесимметрично размещенным внутри испарительной камеры 1 с возможностью вращения вокруг своей оси, выполненным в виде конической пористой металлокерамической трубы, из топливного бака 9 посредством насоса 14, ресивера 15, трубопроводов 16 и 17. При этом осуществляют равномерное распределение топлива в объеме пористой структуры испарительного устройства 5 вследствие вращения этого устройства в подшипниках 20. Топливо подают в зону испарения для разделения на газообразную и жидкую фракции из объема пористой структуры конической металлокерамической трубы, представляющей собой испарительную камеру 5.

Топливо для разделения на фракции нагревают энергией фазового перехода теплоносителя 4 из жидкого в газообразное состояние, подогревая теплоноситель 4 в испарительной камере 1 до температуры парообразования. Для подогрева теплоносителя 4 используют отработавшие газы ДВС, поступающие к испарительной камере 1, выполненной в виде двухфазного термосифона с паровым 2 и конденсационным 3 участками теплоносителя 4, посредством устройства 19 для подвода отработавших газов к испарительной камере. Таким образом нагрев жидкой фазы теплоносителя 4, расположенной на внутренней поверхности испарительной камеры 1 за счет центробежных сил, осуществляют путем утилизации остаточной энергии отработавших газов ДВС, поступающих внутри устройства 19. Испарение нагретого топлива производится в зоне испарения из слоев пористой структуры испарительного устройства 5.

Далее газообразную фракцию топлива подают из сужающейся части испари тельного устройства 5 патрубком 7 в цилиндры ДВС. Неиспарившуюся часть жидкой фракции топлива после его подачи в зону испарения возвращают в эту зону через патрубок 8, соединенный с топливным баком 9 и систему подачи топлива. Таким образом, нагрев топлива, например метанола, до температуры выше конечной температуры испарения (парообразования) газообразной фазой теплоносителя 4 осуществляют за счет того, что пар теплоносителя 4, нагретого отработавшими газами ДВС, конденсируется на наружных стенках 6 испарительного устройства 5, отдавая топливу теплоту фазового перехода.

Предлагаемый способ работы испарителя топлива ДВС и испарители топлива ДВС, реализующие этот способ, позволяют снизить расход топлива, обеспечить низкую токсичность отработавших газов вследствие качественного смесеобразования топливовоздушной смеси для питания ДВС, а также эффективность испарения топлива. Ыр

1. Способ работы испарителя топлива двигателя внутреннего сгорания путем подачи топлива в зону испарения, причем топливо нагревают энергией фазового перехода теплоносителя из жидкого в газообразное состояние, подогревая теплоноситель, а для подогрева теплоносителя используют отработавшие газы двигателя внутреннего сгорания, отличающийся тем, что в зону испарения топливо подают для разделения на газообразную и жидкую фракции из слоев пористой структуры металлокерамического блока, представляющего собой испарительное устройство 2. Испаритель топлива двигателя внутреннего сгорания, содержащий испарительную камеру, выполненную в виде термосифона с паровым и конденсационным участками теплоносителя, испарительное устройство с наружными стенками, размещенное внутри этой камеры, патрубки отвода газообразной и жидкой фракции топлива, соединенные с испарительным устройством, патрубок регулирования подачи топлива, связанный с механизмом регулирования подачи топлива и испарительным устройством, систему подачи топлива, подключенную к испарительному устройству, отличающийся тем, что испарительное устройство выполнено в виде секционного пористого металлокерамического блока, патрубок регулирования подачи топлива - в виде трубчатых элементов, связанных с секциями пористого металлокерамического блока, механизм регулирования подачи топлива подсоединен к акселератору и дроссельной заслонке, размещенной в патрубке отвода газообразной фракции топлива, при этом испаритель топлива дополнительно снабжен устройством для подвода отработавших газов к испарительной камере, а система подачи топлива подключена к испарительному устройству патрубком отвода жидкой фракции топлива.

3. Испаритель топлива двигателя внутреннего сгорания, содержащий испарительную камеру, выполненную в виде термосифона с паровым и конденсационным участками теплоносителя, испарительное устройство с наружной стенкой, размещенное внутри этой камеры, патрубки отвода газообразной и жидкой фракций топлива, соединенные с испарительным устройством, систему подачи топлива, подключенную к испарительному устройству, отличающийся тем, что испарительное устройство, осесимметрично размещенное внутри испарительной камеры с возможностью вращения вокруг своей оси, выполнено в виде конической пористой металлокерамической трубы, соединенной сужающейся частью с патрубком отвода газообразной фракции топлива и установленной коаксиально наружной стенке, при этом испаритель топлива дополнительно снабжен устройством для подвода отработавших газов к испарительной камере, а система подачи топлива подключена к испарительному устройству патрубком отвода жидкой фракции топлива.

Рисунок 1, Рисунок 2

www.findpatent.ru

Способ работы испарителя топлива и испаритель топлива двигателя внутреннего сгорания (варианты)

Использование: устройства для подготовки и подачи топлива в двигатель внутреннего сгорания и способ их работы. Топливо подают в зону испарения для разделения на газообразную и жидкую фракции из слоев пористой структуры металлокерамического блока, представляющего собой испарительное устройство. Для разделения на фракции топливо нагревают энергией фазового перехода теплоносителя из жидкого в газообразное состояние, подогревая теплоноситель. Отработавшие газы двигателя внутреннего сгорания используют для подогрева теплоносителя. Раскрыты два варианта выполнения испарителя топлива. Технический результат: снижение расхода топлива. 3 с.п.ф-лы, 2 ил.

,

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Изобретение относится к машиностроению, а именно к двигателестроению, в частности к устройствам для подготовки и подачи топлива в двигатель внутреннего сгорания (ДВС) и способам их работы. Известен способ работы тепловой трубы путем подачи тепла от внешнего источника к зоне испарения тепловой трубы для нагрева теплоносителя до температуры кипения (испарения), тепломассопереноса по зоне трансформирования тепловой трубы, конденсирования паров теплоносителя в зоне конденсации тепловой трубы и возврата теплоносителя в зону испарения. При этом зону конденсации тепловой трубы, оснащенную ребрами, нагревают энергией фазового перехода теплоносителя из жидкого в газообразное состояние (см. авторское свидетельство СССР N 951059, М.кл. F 28 D 15/00). Основным недостатком описанного способа работы тепловой трубы является необходимость использования подвода теплоты от внешнего источника. Наиболее близким по технической сущности и достигаемому результату к предлагаемому изобретению является способ работы испарителя топлива ДВС путем подачи топлива в зону испарения. Топливо нагревают энергией фазового перехода теплоносителя из жидкого в газообразное состояние, подогревая теплоноситель. Для подогрева теплоносителя используют отработавшие газы двигателя внутреннего сгорания (см. патент РФ N 2002096, МПК F 02 M 31/087). Основным недостатком способа работы испарителя топлива является повышенный расход топлива вследствие малой площади испарения капиллярно-пористой структурой. Известна тепловая труба с испарительным, транспортным и конденсационным участками теплоносителя. Испарительный уча сток связан с внешним источником теплоты. Конденсационный участок снабжен полыми ребрами (см. авторское свидетельство СССР N 951059, М.кл. F 28 D 15/00). Основным недостатком этой тепловой трубы является пониженная теплоотдача вследствие выполнения конденсационного участка с полыми ребрами, что приводит к скоплению в них конденсата. Наиболее близкой по технической сущности и достигаемому результату к предлагаемому изобретению (прототипом) является испарительная горелка, содержащая испарительную камеру, выполненную в виде термосифона с паровым и конденсационным участками теплоносителя, испарительное устройство с наружными стенками, размещенное в верхней части испарительной камеры, патрубок отвода газообразной фракции топлива, соединенный с верхней частью испарительного устройства и соплами для подачи испаренного топлива, патрубок отвода жидкой фракции топлива, соединенный с нижней частью испарительного устройства и соплами для подачи жидкого топлива, патрубок регулирования подачи топлива, связанный с патрубком отвода газообразной фракции, подключенным к испарительному устройству, и с механизмом регулирования подачи топлива, систему подачи топлива, подсоединенную к испарительному устройству посредством змеевика. Испарительное устройство выполнено в виде разделительной емкости с размещенными внутри сепарационной вставкой и поплавковым клапаном. Механизм регулирования подачи топлива выполнен в виде сильфона, связанного с подпружиненным рычагом и регулировочным винтом. Подпружиненный рычаг в свою очередь прикреплен к смесительной головке. Над смесительной головкой друг над другом установлены перфорированные конусы с буртиками. Сопла для подачи жидкого топлива размещены над конусами. Нагрев термосифона осуществляется от тепла горелки (см. авторское свидетельство СССР N 1464011, М.кл4 F 23 D 5/04). Основным недостатком описанной испарительной горелки является повышенный расход топлива вследствие поступления его жидкой фракции в зону горения, так как испарительное устройство выполнено в виде разделительной емкости с сепарационной вставкой. Известна тепловая труба с испарительным транспортным и конденсационным участками теплоносителя. Испарительный участок связан с внешним источником теплоты. Конденсационный участок снабжен полыми ребрами (см. авторское свидетельство СССР N 951059, М.кл. F 28 D 15/00) Основными недостатками этой тепловой трубы являются большие затраты времени на испарение теплоносителя, так как испарительный участок функционирует в стационарном режиме, а также отсутствие возможности регулирования теплоотдачи. Наиболее близкой по технической сущности и достигаемому результату к предлагаемому изобретению (прототипом) является испарительная горелка, содержащая испарительную камеру, выполненную в виде термосифона с паровым и конденсационным участками теплоносителя, испарительное устройство с наружной стенкой, размещенное в верхней части испарительной камеры, патрубок отвода газообразной фракции топлива, соединенный с верхней частью испарительного устройства и соплами для подачи испаренного топлива, патрубок отвода жидкой фракции топлива, соединенный с нижней частью испарительного устройства и соплами для подачи жидкого топлива, систему подачи топлива, подсоединенную к испарительному устройству посредством змеевика. Патрубок отвода газообразной фракции подключен к сильфону, связанному с подпружиненным рычагом и регулировочным винтом. Подпружиненный рычаг в свою очередь прикреплен к смесительной головке. Над смесительной головкой друг над другом установлены перфорированные конусы с буртиками. Сопла для подачи жидкого топлива размещены над конусами. Испарительное устройство выполнено в виде разделительной емкости с размещенными внутри сепарационной вставкой и поплавковым клапаном. Нагрев термосифона осуществляется от тепла горелки (см. авторское свидетельство СССР N 1464011, М.кл4 F 23 D 5/04). Основными недостатками описанной испарительной горелки являются повышенный расход топлива вследствие поступления его жидкой фракции в зону горения, так как испарительное устройство выполнено в виде разделительной емкости с сепарационной вставкой, и отсутствие регулировки подачи топлива, так как использование сильфона для регулирования теплоотдачи способствует инерционности работы испарительной горелки. Сущность изобретения заключается в том, что в способе работы испарителя топлива ДВС путем подачи топлива в зону испарения, причем топливо нагревают энергией фазового перехода теплоносителя из жидкого в газообразное состояние, подогревая теплоноситель, для подогрева теплоносителя используют отработавшие газы двигателя внутреннего сгорания, а топливо подают в зону испарения для разделения на газообразную и жидкую фракции из слоев пористой структуры металлокерамического блока, представляющего собой испарительное устройство. Сущность изобретения заключается также в том, что в испарителе топлива ДВС, содержащем испарительную камеру, выполненную в виде термосифона с паровым и конденсационным участками теплоносителя, испарительное устройство с наружными стенками, размещенное внутри этой камеры, патрубки отвода газообразной и жидкой фракций топлива, соединенные с испарительным устройством, патрубок регулирования подачи топлива, связанный с механизмом регулирования подачи топлива и испарительным устройством, систему подачи топлива, подключенную к испарительному устройству, испарительное устройство выполнено в виде секционного пористого металлокерамического блока, патрубок регулирования подачи топлива - в виде трубчатых элементов, связанных с секциями пористого металлокерамического блока, механизм регулирования подачи топлива подсоединен к акселератору и дроссельной заслонке, размещенной в патрубке отвода газообразной фракции топлива. При этом испаритель топлива дополнительно снабжен устройством для подвода отработавших газов к испарительной камере, а система подачи топлива подключена к исправительному устройству патрубком отвода жидкой фракции топлива. Сущность изобретения заключается так же в том, что в испарителе топлива ДВС, содержащем испарительную камеру, выполненную в виде термосифона с паровым и конденсационным участками теплоносителя, испарительное устройство с наружной стенкой, размещенное внутри этой камеры, патрубки отвода газообразной и жидкой фракций топлива, соединенные с испарительным устройством, систему подачи топлива, подключенную к испарительному устройству, испарительное устройство, осесимметрично размещенное внутри испарительной камеры с возможностью вращения вокруг своей оси, выполнено в виде конической пористой металлокерамической трубы, соединенной сужающей частью с патрубком отвода газообразной фракции топлива и установленной коаксиально наружной стенке. При этом испаритель топлива дополнительно снабжен устройством для подвода отработавших газов к испарительной камере, а система подачи топлива подключена к испарительному устройству патрубком отвода жидкой фракции топлива. Техническим результатом является снижение расхода топлива. Снижение расхода топлива обеспечивается за счет расширения площади испарения пористой структурой металлокерамического блока и введением в испарители топлива ДВС устройства для подвода отработавших газов к испарительной камере. Кроме этого, выполнение испарительного устройства в виде пористой структуры - секционного пористого металлокерамического блока или конической пористой металлокерамической трубы - позволит обеспечить большую площадь контакта жидкой фракции топлива с нагреваемой поверхностью, и, следовательно, его эффективное испарение. Соединение патрубка отвода жидкой фракции топлива с системой подачи топлива устраняет возможность поступления жидкой фракции топлива в камеру сгорания ДВС, что обеспечивает экономичную работу ДВС. Выполнение испарительного устройства с возможностью вращения вокруг своей оси обеспечивает небольшие затраты времени на испарение топлива. Выполнение патрубка регулирования подачи топлива в виде трубчатых элементов, связанных с секциями пористого металлокерамического блока, при соединении механизма регулирования подачи топлива с акселератором и дроссельной заслонкой, в одной предлагаемой конструкции испарителя топлива ДВС, и выполнение испарительного устройства с возможностью вращения вокруг своей оси с обеспечением возможности изменения угловой скорости вращения в другой предлагаемой конструкции испарителя топлива ДВС позволит изменять подачу топлива внутрь испарительного устройства. Конструкции предлагаемых испарителей топлива ДВС поясняются чертежом, где на фиг.1 изображен испаритель топлива ДВС с испарительным устройством в виде секционного пористого металлокерамического блока и системой регулирования подачи топлива, на фиг.2 - испаритель топлива ДВС с испарительным устройством в виде вращающейся конической пористой металлокерамической трубы. Испаритель топлива ДВС (см. фиг. 1) содержит испарительную камеру 1, выполненную в виде двухфазного термосифона с паровым 2 и конденсационным 3 участками теплоносителя 4, например воды. Внутри испарительной камеры 1 размещено испарительное устройство 5 с наружными стенками 6, выполненное в виде секционного пористого металлокерамического блока, изготовленного, например, по технологии самораспространяющегося высокотемпературного синтеза. С испарительным устройством 5 соединены патрубок 7 отвода газообразной фракции топлива в цилиндры ДВС (на чертеже не показаны), патрубок 8 отвода жидкой фракции топлива, подключенный к топливному баку 9, и патрубок 10 регулирования подачи топлива, связанный с механизмом 11 регулирования подачи топлива. Патрубок 10 регулирования подачи топлива выполнен в виде трубчатых элементов, соединенных с секциями пористого металлокерамического блока. Механизм 11 регулирования подачи топлива выполнен в виде крана, например, трехходового, подключенного связью управления 12, например механической, к дроссельной заслонке 13, размещенной в патрубке 7 отвода газообразной фракции топлива, а также подсоединенного, например, механической связью, к педали акселератора (на чертеже не показаны). Система подачи топлива содержит топливный бак 9, соединенный с насосом 14, ресивером 15 и механизмом 11 регулирования подачи топлива трубопроводами 16 и 17 соответственно, а также связанный с испарительным устройством 5 патрубком 8 отвода жидкой фракции топлива. В качестве топлива может быть использован метанол. Трубопровод 18 предназначен для подачи топлива от механизма 11 регулирования подачи топлива через патрубок 10, выполненный в виде трубчатых элементов, к секциям пористого металлокерамического блока испарительного устройства 5. Кроме этого, испаритель топлива ДВС снабжен устройством 19 для подвода отработавших газов ДВС к испарительной камере 1, нагревающим теплоноситель 4. Испаритель топлива ДВС с испарительным устройством в виде секционного пористого металлокерамического блока и системой регулирования подачи топлива работает следующим образом. Топливо из бака 9 насосом 14 по трубопроводу 16 подается в ресивер 15, где поддерживается рабочее давление, и по трубопроводу 17 - к крану. Кран, например, трехходовой, механизма 11 регулирования подачи топлива в зависимости от положения педали акселератора посредством связи управления 12 включает в работу одновременно одну или несколько секций пористого металлокерамического блока, представляющего собой испарительное устройство 5, путем подачи топлива по трубопроводу 18 и патрубку 10, выполненному в виде трубчатых элементов, к испарительному устройству 5. Испарение топлива осуществляется из слоев пористой структуры металлокерамического блока испарительного устройства 5, нагреваемых через стенки 6 газообразной фазой теплоносителя 4, т.е. на паровом участке 2 теплоносителя 4. Газообразная фракция топлива выходит из испарительного устройства 5 и по патрубку 7, минуя дроссельную заслонку 13, подается в цилиндры ДВС. Теплоноситель 4 нагревается отработавшими газами, поступающими к испарительной камере 1 по устройству 19 для подвода отработавших газов ДВС, до температуры парообразования. В свою очередь газообразная фаза теплоносителя 4 на паровом участке 2 нагревает через стенки 6 топливо, находящееся в испарительном устройстве 5, выполненном в виде секционного пористого металлокерамического блока, до температуры выше конечной температуры кипения (испарения). Пар теплоносителя 4 конденсируется на стенках 6, отдавая теплоту фазового перехода топливу. Неиспарившаяся часть жидкой фракции топлива из испарительного устройства 5 через патрубок 8 возвращается в топливный бак 9. Испаритель топлива ДВС (см. фиг. 2) содержит испарительную камеру 1, выполненную в виде двухфазного термосифона с паровым 2 и конденсационным 3 участками теплоносителя 4, например воды. Внутри испарительной камеры 1 осесимметрично ей размещено испарительное устройство 5 с наружной стенкой 6, выполненное в виде конической пористой металлокерамической трубы, изготовленной, например, по технологии самораспространяющегося высокотемпературного синтеза. Коническая пористая металлокерамическая труба установлена коаксиально наружной стенке 6 и соединена сужающейся частью с патрубком 7 отвода газообразной фракции топлива в цилиндры ДВС (на чертеже не показаны). Патрубок 8 отвода жидкой фракции топлива подключен к топливному баку 9 и к испарительному устройству 5. Система подачи топлива содержит топливный бак 9, соединенный с насосом 14 и ресивером 15 трубопроводами 16 и 17 соответственно, а также связанный с испарительным устройством 5 патрубком 8 отвода жидкой фракции топлива. В качестве топлива может быть использован метанол. Испаритель топлива ДВС также снабжен устройством 19 для подвода отработавших газов ДВС к испарительной камере 1, нагревающим теплоноситель 4. Испарительное устройство 5 выполнено с возможностью вращения вокруг своей оси в подшипниках 20 посредством двигателя, например электродвигателя (на чертеже не показан), связанного со шкивом 21. Изготовление пористой металлокерамической трубы конической формы позволяет равномерно по длине распределить поступающее топливо. При этом количество топлива будет возрастать пропорционально увеличению оборотов вращения трубы. Испаритель топлива ДВС с испарительным устройством в виде вращающейся конической пористой металлокерамической трубы работает следующим образом. Топливо из бака 9 насосом 14 по трубопроводу 16 подается в ресивер 15, где поддерживается рабочее давление, и далее по трубопроводу 17 - в полость конической пористой металлокерамической трубы, представляющей собой испарительное устройство 5. При вращении конической пористой металлокерамической трубы в подшипниках 20 от двигателя посредством шкива 21 топливо равномерно распределяется в объеме ее пористой структуры. При нагреве наружной стенки 6 и конической пористой металлокерамической трубы, представляющей собой испарительное устройство 5, установленное коаксиально наружной стенке 6, за счет энергии фазового перехода теплоносителя 4 из жидкого в газообразное состояние осуществляется испарение топлива, пары которого поступают в патрубки 7 отвода газообразной фракции, а затем - в цилиндры двигателя внутреннего сгорания. Нагрев внешней поверхности наружной стенки 6 и конической пористой металлокерамической трубы производится за счет энергии фазового перехода теплоносителя 4 из жидкого в газообразное состояние при вращении этой трубы. Жидкая фаза теплоносителя 4 за счет центробежных сил размещается на внутренней поверхности испарительной камеры 1 и нагревается вследствие утилизации остаточной энергии отработавших газов ДВС, поступающих внутрь устройства 19 для подвода отработавших газов. Неиспарившаяся часть жидкой фракции топлива из испарительного устройства 5 через патрубок 8 возвращается в топливный бак 9. Способ работы испарителя топлива осуществляется следующим образом. Топливо подают в зону испарения для разделения на газообразную и жидкую фракции. Топливо для разделения на фракции нагревают энергией фазового перехода теплоносителя из жидкого в газообразное состояние, подогревая теплоноситель в испарительной камере до температуры парообразования. Для подогрева теплоносителя используют отработавшие газы ДВС. Испарение нагретого топлива осуществляется в зоне испарения из слоев пористой структуры испарительного устройства. Таким образом, топливо нагревают до температуры выше конечной температуры испарения (парообразования) газообразной фазой теплоносителя вследствие того, что пар теплоносителя конденсируется на наружных стенках испарительного устройства, отдавая теплоту фазового перехода топливу. Далее газообразную фракцию топлива подают в цилиндры ДВС, а неиспарившуюся часть жидкой фракции топлива после его подачи в зону испарения возвращают в эту зону. Примеры конкретного выполнения способа. Способ работы испарителя топлива с испарительным устройством в виде секционного пористого металлокерамического блока и системой регулирования подачи топлива реализуется следующим образом (см. фиг. 1). Топливо подают в зону испарения, образованную испарительным устройством 1, выполненным в виде секционного пористого металлокерамического блока, из топливного бака 9 посредствам насоса 14, ресивера 15, трубопроводов 16 и 17, через механизм 11 регулирования подачи топлива в зависимости от положения педали акселератора посредством связи управления 12, трубопровод 18 и патрубок 10, выполненный в виде трубчатых элементов. В зону испарения топливо подают для разделения на газообразную и жидкую фракции из слоев пористой структуры металлокерамического блока, представляющего собой испарительное устройство 5. Топливо для разделения на фракции нагревают энергией фазового перехода теплоносителя 4 из жидкого в газообразное состояние, подогревая теплоноситель 4 в испарительной камере 1 до температуры парообразования. Для подогрева теплоносителя 4 используют отработавшие газы ДВС, поступающие к испарительной камере 1, выполненной в виде двухфазного термосифона с паровым 2 и конденсационным 3 участками теплоносителя, посредством устройства 19 для подвода отработавших газов к испарительной камере. Испарение нагретого топлива осуществляется в зоне испарения из слоев пористой структуры испарительного устройства 5. Далее газообразную фракцию топлива подают патрубком 7 в цилиндры ДВС, минуя дроссельную заслонку 13. Неиспарившуюся часть жидкой фракции топлива после его подачи в зону испарения возвращают в эту зону через патрубок 8, соединенный с топливным баком 9, систему подачи топлива и механизм 11 регулирования подачи топлива. Таким образом, нагрев топлива, например метанола, до температуры выше конечной температуры испарения (парообразования) газообразной фазой теплоносителя 4 осуществляют за счет того, что пар теплоносителя 4, нагретого отработавшими газами ДВС, конденсируется на наружных стенках 6 испарительного устройства 5, отдавая топливу теплоту фазового перехода. Способ работы испарителя топлива с испарительным устройством в виде вращающейся конической пористой металлокерамической трубы (см. фиг. 2) реализуется следующим образом. Топливо подают в зону испарения, образованную испарительным устройством 1, осесимметрично размещенным внутри испарительной камеры 1 с возможностью вращения вокруг своей оси, выполненным в виде конической пористой металлокерамической трубы, из топливного бака 9 посредством насоса 14, ресивера 15, трубопроводов 16 и 17. При этом осуществляют равномерное распределение топлива в объеме пористой структуры испарительного устройства 5 вследствие вращения этого устройства в подшипниках 20. Топливо подают в зону испарения для разделения на газообразную и жидкую фракции из объема пористой структуры конической металлокерамической трубы, представляющей собой испарительную камеру 5. Топливо для разделения на фракции нагревают энергией фазового перехода теплоносителя 4 из жидкого в газообразное состояние, подогревая теплоноситель 4 в испарительной камере 1 до температуры парообразования. Для подогрева теплоносителя 4 используют отработавшие газы ДВС, поступающие к испарительной камере 1, выполненной в виде двухфазного термосифона с паровым 2 и конденсационным 3 участками теплоносителя 4, посредством устройства 19 для подвода отработавших газов к испарительной камере. Таким образом нагрев жидкой фазы теплоносителя 4, расположенной на внутренней поверхности испарительной камеры 1 за счет центробежных сил, осуществляют путем утилизации остаточной энергии отработавших газов ДВС, поступающих внутри устройства 19. Испарение нагретого топлива производится в зоне испарения из слоев пористой структуры испарительного устройства 5. Далее газообразную фракцию топлива подают из сужающейся части испари тельного устройства 5 патрубком 7 в цилиндры ДВС. Неиспарившуюся часть жидкой фракции топлива после его подачи в зону испарения возвращают в эту зону через патрубок 8, соединенный с топливным баком 9 и систему подачи топлива. Таким образом, нагрев топлива, например метанола, до температуры выше конечной температуры испарения (парообразования) газообразной фазой теплоносителя 4 осуществляют за счет того, что пар теплоносителя 4, нагретого отработавшими газами ДВС, конденсируется на наружных стенках 6 испарительного устройства 5, отдавая топливу теплоту фазового перехода. Предлагаемый способ работы испарителя топлива ДВС и испарители топлива ДВС, реализующие этот способ, позволяют снизить расход топлива, обеспечить низкую токсичность отработавших газов вследствие качественного смесеобразования топливовоздушной смеси для питания ДВС, а также эффективность испарения топлива. Ыр

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ работы испарителя топлива двигателя внутреннего сгорания путем подачи топлива в зону испарения, причем топливо нагревают энергией фазового перехода теплоносителя из жидкого в газообразное состояние, подогревая теплоноситель, а для подогрева теплоносителя используют отработавшие газы двигателя внутреннего сгорания, отличающийся тем, что в зону испарения топливо подают для разделения на газообразную и жидкую фракции из слоев пористой структуры металлокерамического блока, представляющего собой испарительное устройство 2. Испаритель топлива двигателя внутреннего сгорания, содержащий испарительную камеру, выполненную в виде термосифона с паровым и конденсационным участками теплоносителя, испарительное устройство с наружными стенками, размещенное внутри этой камеры, патрубки отвода газообразной и жидкой фракции топлива, соединенные с испарительным устройством, патрубок регулирования подачи топлива, связанный с механизмом регулирования подачи топлива и испарительным устройством, систему подачи топлива, подключенную к испарительному устройству, отличающийся тем, что испарительное устройство выполнено в виде секционного пористого металлокерамического блока, патрубок регулирования подачи топлива - в виде трубчатых элементов, связанных с секциями пористого металлокерамического блока, механизм регулирования подачи топлива подсоединен к акселератору и дроссельной заслонке, размещенной в патрубке отвода газообразной фракции топлива, при этом испаритель топлива дополнительно снабжен устройством для подвода отработавших газов к испарительной камере, а система подачи топлива подключена к испарительному устройству патрубком отвода жидкой фракции топлива. 3. Испаритель топлива двигателя внутреннего сгорания, содержащий испарительную камеру, выполненную в виде термосифона с паровым и конденсационным участками теплоносителя, испарительное устройство с наружной стенкой, размещенное внутри этой камеры, патрубки отвода газообразной и жидкой фракций топлива, соединенные с испарительным устройством, систему подачи топлива, подключенную к испарительному устройству, отличающийся тем, что испарительное устройство, осесимметрично размещенное внутри испарительной камеры с возможностью вращения вокруг своей оси, выполнено в виде конической пористой металлокерамической трубы, соединенной сужающейся частью с патрубком отвода газообразной фракции топлива и установленной коаксиально наружной стенке, при этом испаритель топлива дополнительно снабжен устройством для подвода отработавших газов к испарительной камере, а система подачи топлива подключена к испарительному устройству патрубком отвода жидкой фракции топлива.

bankpatentov.ru

10 бесполезных устройств для автомобиля

Более двух веков прошло с тех пор, как люди впервые начали использовать двигатель, управляемое устройство, способное выполнять работу. И первый паровоз, и современный гибридный автомобиль, перемещаются в пространстве благодаря техническим инновациям, а инженеры постоянно работают, чтобы сделать двигатели более эффективными.

С того дня, когда потребители начали жаловаться на стоимость горючего, появилась армия изобретателей, предлагающих устройства для увеличения пробега на том же количестве топлива. Такие технические новшества, как электронный впрыск топлива и использование более легких и прочных внутренних компонентов двигателя, сделали большой вклад в  успехи из области топливной эффективности. Неудивительно, что они стали стандартными функциями на большинстве современных легковых автомобилей и грузовиков. Но многие изобретения оказались мистификациями, которые ничего не делают для экономии топлива, а в отдельных случаях могут, на самом деле, уменьшить пробег автомобиля и вызвать опасные повреждения двигателя.

На рынке существует море устройств, предназначенных для экономии горючего. Хотя большинство из них носит великолепные названия, но от них мало проку.

 

1. Генераторы водорода

Водород уже давно пытаются применять в виде альтернативного топлива для нефтепродуктов и не зря. В окружающей среде он находится в изобилии. Водород соединяется с кислородом, создавая воду, и несет в себе огромное количество энергии. Долгие годы ученые работали над созданием водородных двигателей внутреннего сгорания, в надежде, что энергия от сгорания водорода может стать источником чистого сжигания и альтернативой бензину.

Но водород имеет ряд серьезных недостатков, которые затрудняют его использование в качестве автомобильного топлива. Он находится на Земле не в естественном газообразном виде, а должен быть извлечен из воды или из других источников, для чего требуется много энергии. Водород — легкий газ, и его трудно хранить в достаточно больших количествах для транспортировки. Высокая энергия водорода, которая делает его таким привлекательным в качестве топлива, также делает водород опасным, если эту энергию не обрабатывать должным образом.

Но это не остановило целую армию изобретателей, предлагающих водородогенерирующие устройства для увеличения пробега. Считается, что при создании водорода из воды и добавлении этого высокоэнергетического газа к автомобильному топливу, увеличивается пробег. Многие, так называемые, «водородные генераторы», работают по одной и той же схеме: бортовое устройство для  электролиза берет воду из специального резервуара, и с помощью электроэнергии, вырабатываемой автомобильным генератором, разлагает воду на водород и кислород. Эти составляющие затем вводят в двигатель, якобы, давая автомобилю повышение мощности и экономию топлива.

Главная проблема заключается именно в этих бортовых генераторах водорода. Требуется очень много электричества, чтобы разорвать тесную связь между атомами водорода и кислорода в воде. Электроэнергия приходит не откуда-нибудь с мощных электростанций, а вырабатывается прямо в машине. Это означает, что возникает значительная дополнительная нагрузка на генератор. Автомобиль можно использовать для производства водородного топлива, но он будет потреблять на этот процесс больше энергии, чем создавать.

Как результат, генераторы водорода из воды, как правило, производят очень небольшое количество газа. Его просто физически недостаточно, чтобы ощутимо повысить мощность двигателя и, хоть сколь-нибудь, реально увеличить пробег.

 

2. Вихревые устройства

Двигатели внутреннего сгорания в легковых и грузовых автомобилях работают как большие воздушные насосы: поршни затягивают в цилиндры точно дозированную смесь топлива и воздуха, которая затем поджигается и выбрасывается через выхлопную систему. Энергия горения смеси приводит в действие двигатель, заставляя его втягивать новую топливо-воздушную смесь, и цикл повторяется. Это побуждает шарлатанов играть на заблуждениях неискушенного владельца автомобиля.

Инженеры обращают пристальное внимание на поступление воздуха в двигатель. Турбулентность в потоке воздуха может повлиять на то, как топливно-воздушная смесь будет попадать в камеру сгорания, и это может негативно повлиять на эффективность двигателя. Создатели вихревых гаджетов часто утверждают, что их устройства изменяют этот воздушный поток таким образом, чтобы улучшить смешение топлива с воздухом, улучшают сгораемость топлива и, следовательно, дают возможность получения большего пробега с каждого литра горючего.

Технология «вихревых генераторов», по сути, была эффективна на двигателях устаревшей конструкции. Автомобили, построенные до управления двигателем компьютером, обычно не слишком полагались на форму и длину элементов впускного тракта для забора воздуха и механически манипулировали процессом смешивания топлива и воздуха в карбюраторе. Поэтому подобная «воздушная оптимизация» действительно могла дать положительный результат. Но современные автомобили имеют компьютеры, которые постоянно корректируют расход топлива в зависимости от поступления воздуха. Результат? Двигатель может на самом деле начать работать еще менее экономично, поскольку компьютер начнет компенсировать изменение воздушного потока путем изменения расхода топлива. Электронный блок управления двигателем, контролирующий топливный расход, откалиброван на заводе, чтобы обеспечить необходимое количество топлива для каждого режима работы двигателя. Увеличьте количество поступающего в двигатель воздуха, и вы увеличите количество подаваемого топлива, чем, скорее всего, уменьшите экономичность, а не улучшите ее. Но еще хуже, если воздуха окажется слишком много и смесь станет «бедной». В результате резко упадет мощность и возрастет температура на выпускных клапанах, отчего наступит их прогар со всеми вытекающими последствиями в виде ремонта.

 

3. Топливные ионизаторы

Этот тип топливоэкономящего  гаджета можно найти и для дизельных, и для бензиновых двигателей. По замыслу, он должен располагаться где-то вдоль топливопровода между топливным насосом и форсунками. Его создатели заявляют, что он создает ионное поле, которое отделяет молекулы топлива друг от друга, когда они проходят через него. Это, по их словам, дает топливу возможность сформировать более дисперсное облако в камере сгорания, что дает возможность сжечь топливо легче и более чисто.

Устройство рассчитано на водителей, которые не понимают, как работают современные двигатели. В современных двигателях топливные форсунки тонко настроены для получения ультрадисперсного тумана из топлива и воздуха в камере сгорания. Технологии, заложенные в этой системе, являются настолько эффективными, что лишь малая толика впрыснутого топлива не сжигается. Даже если ионизирующие устройства действительно сделают пары топлива горящими лучше (вопрос спорный, мягко говоря), то совершенно незначительное количество дополнительного топлива, которое сожжется, никак не даст значительного увеличения пробега, о чем утверждают продавцы этой продукции.

 

4. Супер-свечи зажигания

Этой группе устройств нужно дать медаль за заслуги в прошлые годы. Речь идет о супер-свечах зажигания. Стабильность возникновения искры улучшает качество и объем сжигаемого топлива при каждом такте двигателя, снижает количество неизрасходованного топлива, которое в прямом смысле «вылетает в трубу».

Для первых двигателей внутреннего сгорания улучшенные свечи имели полный смысл. Механические трамблеры могли создавать ошибки, которая вызвали осечки свечей зажигания, в результате чего один или несколько цилиндров просто прокачивали через себя несгоревшее топливо. Свечи, которые обладали усиленной надежностью, могли повысить эффективность этих маломощных двигателей.

Но такого рода проблемы практически исчезли в современных двигателях. Благодаря компьютеризированному управлению двигателем и новой, более надежной  технологии зажигания, современные моторы дают осечку, только если у них есть значительные проблемы. В итоге — нет действительной необходимости повышения надежности зажигания, поскольку  для двигателя уже совершенно достаточно существующей.

Аналогичным образом, утверждение, что супер-свечи зажигания позволяют сжигать топливо быстрее и с большей температурой, также является необоснованным. Топливо будет гореть с определенной скоростью и температурой, независимо от того, насколько высока температура искры, которая воспламеняет его. Усилители зажигания, возможно, когда-то были полезными модификациями для двигателя, но теперь они просто мистификации, призванные сделать необразованных драйверов немного беднее.

 

5. Водяная инжекция

Эта технология на самом деле имеет исторические корни. Во время Второй Мировой войны, авиационным инженерам было необходимо средство для борьбы с детонацией — преждевременным воспламенением, которое могло повредить детали двигателя в поршневых истребителях. Их решение заключалось во впрыскивании смеси из воды и алкоголя в воздухозаборник. Это охлаждало двигатель и помогало сохранять правильное зажигание.

После войны на американских хот-родах применяли впрыск воды для снижения детонации высокопроизводительных двигателей. Технология отлично работала на горстке успешных гоночных автомобилей, но оказалась бесперспективной для массового использования.

Большинство водителей современных автомобилей никогда не сталкивались с детонацией. Она обычно возникает только в тех случаях, когда водитель использует двигатель с высокой степенью сжатия в сочетании с низкооктановым бензином. В нормальном транспортном средстве, заправленном рекомендованным бензином и которым управляют при нормальных условиях, ситуация, в которой возникнет детонация, маловероятна, поскольку бортовой компьютер автоматически выставляет нужный угол опережения зажигания. Впрыск воды может оказаться полезным инструментом для конкретных супер-двигателей, но это не особенно полезно и эффективно для вашего повседневного автомобиля.

 

6. Топливные магниты

Эти устройства, как и системы ионизации топлива, якобы, подготавливают топливо для лучшего смешивания с воздухом, при попадании в камеру сгорания. По замыслу производителей, магниты создают мощные магнитные поля и с их помощью структурируют молекулы топлива.

Как и в случае с ионизаторами топлива, от топливных магнитов мало проку, кроме выкачивания денег для их создателей. Топлива на базе нефти используются повсеместно потому, что они стабильны. Хотя они не могут выделить столько же энергии, как например, водород, но они гораздо безопаснее и проще в обращении. Нефтяные топлива, по сути, являются слишком устойчивыми, чтобы быть существенно изменены небольшим постоянным магнитом, расположенным на топливопроводе. Даже если такой магнит сможет создать значительное магнитное поле, это поле, прежде всего, начнет воздействовать на металлический топливопровод, бак и компоненты двигателя. Чрезвычайно сильный магнит может нарушить чувствительную электронику, хотя и это маловероятно, учитывая тщательную проработку современных электронных компонентов.

 

7. Ионизатор двигателя

Эти устройства, которые часто подключают к проводам свечей зажигания или распределителю зажигания, якобы, улучшают сжигание топлива путем создания «ионной короны» вокруг двигателя. Предположительно, выполняют ту же функцию, что и ионизаторы топлива, просто ближе к точке воспламенения.

Как упоминалось ранее, предполагаемое воздействие на структуру топлива с помощью ионизации, не может произойти на самом деле. Ионизатор не может вмешаться в процесс горения топливо-воздушной смеси, а бензин, в его не сгоревшей форме, является плохим проводником. Электрические поля в автомобиле возникают и от разрядов свечей зажигания, создаются генератором и высоковольтными проводами. Они могли бы вызвать то же разложение и упорядочение молекул топлива задолго до того, как бензин достигнет двигателя безо всякого дополнительного ионизатора.

Возможно, это одна из самых опасных мистификаций. В тестах — ионизирующие устройства показали себя как простые связки красиво уложенных проводов, которые могли бы, к тому же, привести к короткому замыканию или пожару в случае неправильного подключения.

 

8. Испаритель бензина

Характеристики бензина меняются вместе с его физическим состоянием. В жидком состоянии он горит слишком медленно, чтобы быть полезным для сгорания в двигателе. Но при испарении, бензин горит на уровне взрыва, необходимого для работы мотора. Торговцы топливными гаджетами используют этот факт в течение многих лет.

Одна из наиболее распространенных поделок на эту тему – специальные «паровые форсунки». По замыслу, это устройство преобразует топливо в пар прежде, чем оно достигнет двигателя, от чего, якобы, топливо сгорает более эффективно.

Проблема с этими устройствами возникает не в момент зажигания, а в выхлопном тракте современного автомобиля. Датчик кислорода (лямбда зонд) измеряет количество кислорода в выхлопной трубе автомобиля и оценивает, правильно ли готовится топливо-воздушная смесь. Добавление дополнительных испарений топлива в инжектор, приводит его к созданию переобогащенной смеси, в которой слишком много топлива и не хватает воздуха. Датчик кислорода немедленно отреагирует на это изменение, и даст сигнал компьютеру на обеднение смеси, то есть, на уменьшение подачи топлива.. В лучшем случае, это означает, что двигатель будет работать точно так же, как и без этой паровой форсунки. В худшем случае, смесь в цилиндрах окажется переобогащена, что уменьшает мощность и увеличивает расход, в то время, как компьютер лихорадочно делает дополнительные корректировки, чтобы устранить дисбаланс в составе топливо-воздушной смеси.

 

9. Топливные и масляные присадки

В магазинах автозапчастей их полным-полно. На бутылках и коробках наклеены этикетки,  которые утверждают, что для повышения мощности двигателя и уменьшения его износа все, что вам нужно сделать, это налить присадку в картер или в бензобак. Благодаря их относительно невысокой стоимости, многие автовладельцы пользуются ими, но не все из них работают так, как рекламируется.

Современные двигатели легковых и грузовых автомобилей являются результатом работы инженеров на протяжении десятилетий и столетий. Не бывает неизносимых деталей. Любое устройство, которое превращает серию небольших взрывов в движение — обречено к износу с течением времени. Но автомобильный двигатель испытывается инженерами в течение десятков тысяч часов, часто в условиях худших, чем обычные условия эксплуатации. В моторных и трансмиссионных маслах, рекомендуемых производителями моторов, уже имеются пакеты присадок, разработанных производителями горюче-смазочных материалов. Как следствие, любые дополнительные топливные и масляные добавки, могут демонстрировать только минимальные улучшения при их использовании. Хуже, если они начинают вступать в реакции с уже имеющимися добавками в моторных маслах и металлом деталей двигателя, от чего может наблюдаться выпадение осадка в маслах, возникновение абразивных поверхностей на деталях и так далее.

Некоторые присадки в моторные масла рекламируются с поразительной демонстрацией. Сначала двигатель работает с присадкой в моторном масле. Затем масло из картера сливается и мотор запускается снова. Каким-то чудом двигатель работает «на сухую». На самом деле никакого чуда тут нет. Современный двигатель достаточно крепок, чтобы некоторое время проработать без масла. Наличие или отсутствие «волшебной присадки» для масла тут совершенно не причем.

Справедливости ради нужно отметить, что некоторые присадки могут действительно оказаться полезными для двигателя. Но таковых – капля в море.

 

10. Топливные катализаторы

Эти устройства представляют собой куски из различных металлов, погружаемых в топливо. Пояснение действия состоит в том, что металлы производят каталитическую реакцию в топливе, удаляют примеси и делают его более эффективным энергоносителем. Некоторые из этих устройств, как утверждают, даже удаляют вредные бактерии из топлива.

Преимущества этих устройств, трудно измерить без помощи масс-спектрометра или другого оборудования, которое может измерять химические изменения, происходящие в топливе. Но все это может быть спорным, учитывая еще один фактор —  современные двигатели оптимизированы для работы на современном топливе. Топливо — и так 100% подходит к оптимальной конструкции двигателя, предназначенного для его сжигания. Любой металлический катализатор может дать, в лучшем случае, только минимальные изменения, которые вряд ли будут заметны для мотора. А вот серьезные изменения могут вызвать отклонения от стандартов инженерии двигателя и его системы управления. Если катализаторы топлива действительно обладают свойствами, которые делают его сгорающими чище или быстрее, не факт, что система управления двигателем сможет адаптироваться к подобным улучшениям топлива и увеличит пробег автомобиля.

qriosity.ru

 

Технический результат заключается в повышении срока службы испарителя топлива за счет уменьшения степени закоксовывания, в том числе при использовании низкосортных топлив, и, как следствие, к повышению ресурса горелочного устройства и автономной отопительной системы в целом, в увеличении мощности автономной отопительной системы, надежности, а также в упрощении обслуживания и снижении стоимости ремонта автономной отопительной системы. Испаритель топлива содержит корпус в виде круглого диска, спрессованный из хаотично расположенных и распределенных равномерно в объеме 80-150 отрезков, имеющих длину 0,8-1,5 м, нихромовой проволоки круглого сечения диаметром 0,1 мм, при этом корпус выполнен с диаметром, лежащим в диапазоне 25-50 мм, высотой - в диапазоне 2-8 мм, и весом - в диапазоне 7-30 г. 8 з.п. ф-лы, 3 Ил.

Полезная модель относится к области машиностроения и энергетики, а конкретно к испарителям топлива, которые предназначены для горелочных устройств, используемых в автономных отопительных системах, преимущественно автомобильных, а также в иных устройствах, использующих как источник тепловой энергии процесс сжигания жидкого углеводородного топлива, преимущественно нефтяного, а именно дизельного топлива, бензина и тому подобное.

Известен испаритель топлива, содержащий корпус в виде круглого диска, спрессованный из вольфрамовой проволоки круглого сечения диаметром 0,03-0,20 мм с получением капиллярной структуры плотностью 1,85-6,5 г/см3. Толщина корпуса испарительного элемента лежит в диапазоне 0,8-4,0 мм. В корпусе выполнены продольные отверстия (с осями, параллельным оси диска корпуса) для запала и воздушной продувки (RU 81787 U1, МПК F23D 5/06, 2009).

При использовании известного испарителя топлива происходит его постепенное закоксовывание, что приводит к значительному сокращению срока службы, особенно при использовании низкосортных топлив. Выход из строя испарителя топлива приводит к отказу в работе автономной отопительной системы.

Технический результат настоящей полезной модели заключается в повышении срока службы испарителя топлива за счет уменьшения степени закоксовывания, в том числе при использовании низкосортных топлив, и, как следствие, к повышению ресурса горелочного устройства и автономной отопительной системы в целом, в увеличении мощности автономной отопительной системы, надежности, а также в упрощении обслуживания и снижении стоимости ремонта автономной отопительной системы.

Достижение технического результат обеспечивает испаритель топлива, содержащий корпус в виде круглого диска, спрессованный из хаотично расположенных и распределенных равномерно в объеме 80-150 отрезков, имеющих длину 0,8-1,5 м, нихромовой проволоки круглого сечения диаметром 0,1 мм, при этом корпус выполнен с диаметром, лежащим в диапазоне 25-50 мм, высотой - в диапазоне 2-8 мм, и весом - в диапазоне 7-30 г.

Корпус испарителя топлива может быть выполнен с диаметром 38 мм, высотой 3 мм и весом 15 г.

Корпус испарителя топлива может быть выполнен с продольным отверстием для продувки воздухом. При этом корпус может иметь диаметр 33 мм, высоту 3 мм и вес 10 г.

Корпус испарителя топлива может быть выполнен продольным отверстием для продувки воздухом и отверстием для запала, расположенными эксцентрично. При этом корпус может также иметь диаметр 33 мм, высоту 3 мм и вес 10 г.

В наилучшем варианте осуществления полезной модели во всех перечисленных выше видах корпус может быть спрессован из отрезков нихромовой проволоки с предварительно нарушенной линейностью.

Также в наилучшем варианте осуществления полезной модели во всех перечисленных выше видах корпус может быть спрессован из отрезков нихромовой проволоки с длиной 1 м.

Предпочтительно изготовление корпуса из отрезков нихромовой проволоки из сплава марки Х20Н80 (ГОСТ 10994-74).

В сравнении с вольфрамом нихром обладает повышенной жаропрочностью, устойчивостью, пластичностью и стабильностью формы и его рекомендуется применять для оборудования, требующего высокой надежности. По плотности нихром уступает вольфраму (8,4 г/см3-19,3 г/см3), но за счет меньшей плотности нихрома и меньшей силы сжатия при изготовлении испарителя топлива, повышается теплоотдача испарителя топлива, который становится более проходим для топлива, чем испаритель топлива, изготовленный из аналогичной вольфрамовой проволоки. Благодаря этому снижается степень закоксовывания испарителя топлива при использовании низкосортных дизельного топлива и бензинов. При этом нихром, в сравнении с вольфрамом, обладает более высокой теплоемкостью (нихром - 0,44 кДж/кг; вольфрам - 0,134 кДж/кг), что способствует повышению теплоотдачи испарительного элемента. Стоимость нихромовой проволоки кратно ниже стоимости аналогичной вольфрамовой проволоки.

Благодаря указанным особенностям изготовленный в соответствии с настоящей полезной моделью испаритель топлива позволяет повысить ресурс горелочного устройства, увеличить мощности автономной отопительной системы и ее надежность, снижается стоимость ремонта автономной отопительной системы.

Возможность осуществления полезной модели иллюстрируется примерами конкретного выполнения, показанными на чертежах, где в плане показаны: на фиг.1 - испаритель топлива с корпусом 1 без отверстий; на фиг.2 - испаритель топлива, корпус 2 которого выполнен с расположенным эксцентрично продольным (с осью, параллельной оси диска корпуса 2) отверстием 3; на фиг.3 - испаритель топлива с корпусом 4, имеющим выполненные в корпусе 4 продольно и расположенные эксцентрично отверстие 5 для продувки воздухом и отверстие 6 для запала.

Корпус 1 показанного на фиг.1 испарителя топлива имеет диаметр 38 мм, высоту 3 мм и весит 15 г. Он изготовлен из 150 отрезков длиной 1 м нихромовой проволоки диаметром 0,1 мм.

Корпус 2 показанного на фиг.2 испарителя топлива имеет диаметр 33 мм, высоту 3 мм и вес 10 г. Он изготовлен из 100 отрезков длиной 1 м нихромовой проволоки диаметром 0,1 мм. Ось отверстия 3 для продувки воздухом, которое имеет диаметр 7 мм, расположена на расстоянии 6,5 мм от края корпуса 2.

Корпус 4 показанного на фиг.3 испарителя топлива имеет диаметр 33 мм, высоту 3 мм и вес 10 г. Он также изготовлен из 100 отрезков длиной 1 м нихромовой проволоки диаметром 0,1 мм. Ось отверстия 5 для продувки воздухом здесь также имеет диаметр 7 мм и расположено оно на расстоянии 6,5 мм от края корпуса 4. Отверстие 6 для запала имеет диаметр 3 мм и расположено осью на расстоянии 8 мм от оси отверстия 5, причем оба отверстии 5 и 6 расположены с касанием со стороны оси корпуса 4 прямой, параллельной касательной к корпусу 4 в точке 7 пересечения края корпуса 4 и радиуса, на котором расположена ось отверстия 5 для продувки воздухом.

Для изготовления корпусов 1, 2, 4 всех описанных видов конструкций испарителей топлива использована нихромовая проволока диаметром 0,1 мм из сплава Х20Н80, который характеризуется содержанием хрома Cr 20,0-23,0% и никеля Ni - остальное. Примеси вместе с хромом содержаться в количестве 27,35%., при этом железа Fe - до 1,0%, алюминия Al - не более 0,20%, титана Ti - не более 0,20%, углерода С - до 0,06%, кремния Si - 1-1.5%, марганца - до 0,6%, серы - до 0,015%, фосфора P - до 0,02%, церия Zr - 0.2-0.5%.

При изготовлении предварительно нарушается линейность нихромой проволоки. Это делает либо вручную, периодическим смятием мотка проволоки некоторое время. Либо с использованием ручного пресса с сопрягаемыми плавно криволинейными выпуклыми поверхностями, между которыми неоднократно зажимается моток проволоки с изменением его положения между каждыми зажатиями. Эта операция приводит к утрате проволокой упругости.

Затем от мотка проволоки отрезаются отрезки длиной в 1 м, которые с хаотичным расположением линий отрезков укладываются равномерно в объем полости матрицы. Полость матрицы имеет конфигурацию, соответствующую конфигурации изготавливаемого корпуса (1, 2, 4) испарителя топлива.

Затем осуществляется прессование под давлением 5 атм. с ограничением сжатия спрессовываемого материала по высоте на величину, соответствующую высоте изготавливаемого корпуса (1, 2, 4) испарителя топлива, чем исключается возможность избыточного сжатия изготавливаемого испарителя топлива.

1. Испаритель топлива, содержащий корпус в виде круглого диска, спрессованный из хаотично расположенных и распределенных равномерно в объеме 80-150 отрезков, имеющих длину 0,8-1,5 м, нихромовой проволоки круглого сечения диаметром 0,1 мм, при этом корпус выполнен с диаметром, лежащим в диапазоне 25-50 мм, высотой - в диапазоне 2-8 мм, и весом - в диапазоне 7-30 г.

2. Испаритель топлива по п.1, отличающийся тем, что корпус выполнен с продольным отверстием для продувки воздухом.

3. Испаритель топлива по п.1, отличающийся тем, что корпус выполнен с продольным отверстием для продувки воздухом и отверстием для запала, расположенными эксцентрично.

4. Испаритель топлива по п.1, отличающийся тем, что корпус выполнен с диаметром 38 мм, высотой 3 мм и весом 15 г.

5. Испаритель топлива по п.2, отличающийся тем, что корпус выполнен с диаметром 33 мм, высотой 3 мм и весом 10 г.

6. Испаритель топлива по п.3, отличающийся тем, что корпус выполнен с диаметром 33 мм и высотой 3 мм и весом 10 г.

7. Испаритель топлива по пп.1-5 или 6, отличающийся тем, что корпус спрессован из отрезков нихромовой проволоки с предварительно нарушенной линейностью.

8. Испаритель топлива по пп.1-5 или 6, отличающийся тем, что корпус спрессован из отрезков нихромовой проволоки с длиной 1 м.

9. Испаритель топлива по пп.1-5 или 6, отличающийся тем, что использована проволока из сплава марки Х20Н80.

poleznayamodel.ru

способ работы испарителя топлива и испаритель топлива двигателя внутреннего сгорания (варианты) - патент РФ 2168054

Использование: устройства для подготовки и подачи топлива в двигатель внутреннего сгорания и способ их работы. Топливо подают в зону испарения для разделения на газообразную и жидкую фракции из слоев пористой структуры металлокерамического блока, представляющего собой испарительное устройство. Для разделения на фракции топливо нагревают энергией фазового перехода теплоносителя из жидкого в газообразное состояние, подогревая теплоноситель. Отработавшие газы двигателя внутреннего сгорания используют для подогрева теплоносителя. Раскрыты два варианта выполнения испарителя топлива. Технический результат: снижение расхода топлива. 3 с.п.ф-лы, 2 ил. Изобретение относится к машиностроению, а именно к двигателестроению, в частности к устройствам для подготовки и подачи топлива в двигатель внутреннего сгорания (ДВС) и способам их работы. Известен способ работы тепловой трубы путем подачи тепла от внешнего источника к зоне испарения тепловой трубы для нагрева теплоносителя до температуры кипения (испарения), тепломассопереноса по зоне трансформирования тепловой трубы, конденсирования паров теплоносителя в зоне конденсации тепловой трубы и возврата теплоносителя в зону испарения. При этом зону конденсации тепловой трубы, оснащенную ребрами, нагревают энергией фазового перехода теплоносителя из жидкого в газообразное состояние (см. авторское свидетельство СССР N 951059, М.кл. F 28 D 15/00). Основным недостатком описанного способа работы тепловой трубы является необходимость использования подвода теплоты от внешнего источника. Наиболее близким по технической сущности и достигаемому результату к предлагаемому изобретению является способ работы испарителя топлива ДВС путем подачи топлива в зону испарения. Топливо нагревают энергией фазового перехода теплоносителя из жидкого в газообразное состояние, подогревая теплоноситель. Для подогрева теплоносителя используют отработавшие газы двигателя внутреннего сгорания (см. патент РФ N 2002096, МПК F 02 M 31/087). Основным недостатком способа работы испарителя топлива является повышенный расход топлива вследствие малой площади испарения капиллярно-пористой структурой. Известна тепловая труба с испарительным, транспортным и конденсационным участками теплоносителя. Испарительный уча сток связан с внешним источником теплоты. Конденсационный участок снабжен полыми ребрами (см. авторское свидетельство СССР N 951059, М.кл. F 28 D 15/00). Основным недостатком этой тепловой трубы является пониженная теплоотдача вследствие выполнения конденсационного участка с полыми ребрами, что приводит к скоплению в них конденсата. Наиболее близкой по технической сущности и достигаемому результату к предлагаемому изобретению (прототипом) является испарительная горелка, содержащая испарительную камеру, выполненную в виде термосифона с паровым и конденсационным участками теплоносителя, испарительное устройство с наружными стенками, размещенное в верхней части испарительной камеры, патрубок отвода газообразной фракции топлива, соединенный с верхней частью испарительного устройства и соплами для подачи испаренного топлива, патрубок отвода жидкой фракции топлива, соединенный с нижней частью испарительного устройства и соплами для подачи жидкого топлива, патрубок регулирования подачи топлива, связанный с патрубком отвода газообразной фракции, подключенным к испарительному устройству, и с механизмом регулирования подачи топлива, систему подачи топлива, подсоединенную к испарительному устройству посредством змеевика. Испарительное устройство выполнено в виде разделительной емкости с размещенными внутри сепарационной вставкой и поплавковым клапаном. Механизм регулирования подачи топлива выполнен в виде сильфона, связанного с подпружиненным рычагом и регулировочным винтом. Подпружиненный рычаг в свою очередь прикреплен к смесительной головке. Над смесительной головкой друг над другом установлены перфорированные конусы с буртиками. Сопла для подачи жидкого топлива размещены над конусами. Нагрев термосифона осуществляется от тепла горелки (см. авторское свидетельство СССР N 1464011, М.кл4 F 23 D 5/04). Основным недостатком описанной испарительной горелки является повышенный расход топлива вследствие поступления его жидкой фракции в зону горения, так как испарительное устройство выполнено в виде разделительной емкости с сепарационной вставкой. Известна тепловая труба с испарительным транспортным и конденсационным участками теплоносителя. Испарительный участок связан с внешним источником теплоты. Конденсационный участок снабжен полыми ребрами (см. авторское свидетельство СССР N 951059, М.кл. F 28 D 15/00) Основными недостатками этой тепловой трубы являются большие затраты времени на испарение теплоносителя, так как испарительный участок функционирует в стационарном режиме, а также отсутствие возможности регулирования теплоотдачи. Наиболее близкой по технической сущности и достигаемому результату к предлагаемому изобретению (прототипом) является испарительная горелка, содержащая испарительную камеру, выполненную в виде термосифона с паровым и конденсационным участками теплоносителя, испарительное устройство с наружной стенкой, размещенное в верхней части испарительной камеры, патрубок отвода газообразной фракции топлива, соединенный с верхней частью испарительного устройства и соплами для подачи испаренного топлива, патрубок отвода жидкой фракции топлива, соединенный с нижней частью испарительного устройства и соплами для подачи жидкого топлива, систему подачи топлива, подсоединенную к испарительному устройству посредством змеевика. Патрубок отвода газообразной фракции подключен к сильфону, связанному с подпружиненным рычагом и регулировочным винтом. Подпружиненный рычаг в свою очередь прикреплен к смесительной головке. Над смесительной головкой друг над другом установлены перфорированные конусы с буртиками. Сопла для подачи жидкого топлива размещены над конусами. Испарительное устройство выполнено в виде разделительной емкости с размещенными внутри сепарационной вставкой и поплавковым клапаном. Нагрев термосифона осуществляется от тепла горелки (см. авторское свидетельство СССР N 1464011, М.кл4 F 23 D 5/04). Основными недостатками описанной испарительной горелки являются повышенный расход топлива вследствие поступления его жидкой фракции в зону горения, так как испарительное устройство выполнено в виде разделительной емкости с сепарационной вставкой, и отсутствие регулировки подачи топлива, так как использование сильфона для регулирования теплоотдачи способствует инерционности работы испарительной горелки. Сущность изобретения заключается в том, что в способе работы испарителя топлива ДВС путем подачи топлива в зону испарения, причем топливо нагревают энергией фазового перехода теплоносителя из жидкого в газообразное состояние, подогревая теплоноситель, для подогрева теплоносителя используют отработавшие газы двигателя внутреннего сгорания, а топливо подают в зону испарения для разделения на газообразную и жидкую фракции из слоев пористой структуры металлокерамического блока, представляющего собой испарительное устройство. Сущность изобретения заключается также в том, что в испарителе топлива ДВС, содержащем испарительную камеру, выполненную в виде термосифона с паровым и конденсационным участками теплоносителя, испарительное устройство с наружными стенками, размещенное внутри этой камеры, патрубки отвода газообразной и жидкой фракций топлива, соединенные с испарительным устройством, патрубок регулирования подачи топлива, связанный с механизмом регулирования подачи топлива и испарительным устройством, систему подачи топлива, подключенную к испарительному устройству, испарительное устройство выполнено в виде секционного пористого металлокерамического блока, патрубок регулирования подачи топлива - в виде трубчатых элементов, связанных с секциями пористого металлокерамического блока, механизм регулирования подачи топлива подсоединен к акселератору и дроссельной заслонке, размещенной в патрубке отвода газообразной фракции топлива. При этом испаритель топлива дополнительно снабжен устройством для подвода отработавших газов к испарительной камере, а система подачи топлива подключена к исправительному устройству патрубком отвода жидкой фракции топлива. Сущность изобретения заключается так же в том, что в испарителе топлива ДВС, содержащем испарительную камеру, выполненную в виде термосифона с паровым и конденсационным участками теплоносителя, испарительное устройство с наружной стенкой, размещенное внутри этой камеры, патрубки отвода газообразной и жидкой фракций топлива, соединенные с испарительным устройством, систему подачи топлива, подключенную к испарительному устройству, испарительное устройство, осесимметрично размещенное внутри испарительной камеры с возможностью вращения вокруг своей оси, выполнено в виде конической пористой металлокерамической трубы, соединенной сужающей частью с патрубком отвода газообразной фракции топлива и установленной коаксиально наружной стенке. При этом испаритель топлива дополнительно снабжен устройством для подвода отработавших газов к испарительной камере, а система подачи топлива подключена к испарительному устройству патрубком отвода жидкой фракции топлива. Техническим результатом является снижение расхода топлива. Снижение расхода топлива обеспечивается за счет расширения площади испарения пористой структурой металлокерамического блока и введением в испарители топлива ДВС устройства для подвода отработавших газов к испарительной камере. Кроме этого, выполнение испарительного устройства в виде пористой структуры - секционного пористого металлокерамического блока или конической пористой металлокерамической трубы - позволит обеспечить большую площадь контакта жидкой фракции топлива с нагреваемой поверхностью, и, следовательно, его эффективное испарение. Соединение патрубка отвода жидкой фракции топлива с системой подачи топлива устраняет возможность поступления жидкой фракции топлива в камеру сгорания ДВС, что обеспечивает экономичную работу ДВС. Выполнение испарительного устройства с возможностью вращения вокруг своей оси обеспечивает небольшие затраты времени на испарение топлива. Выполнение патрубка регулирования подачи топлива в виде трубчатых элементов, связанных с секциями пористого металлокерамического блока, при соединении механизма регулирования подачи топлива с акселератором и дроссельной заслонкой, в одной предлагаемой конструкции испарителя топлива ДВС, и выполнение испарительного устройства с возможностью вращения вокруг своей оси с обеспечением возможности изменения угловой скорости вращения в другой предлагаемой конструкции испарителя топлива ДВС позволит изменять подачу топлива внутрь испарительного устройства. Конструкции предлагаемых испарителей топлива ДВС поясняются чертежом, где на фиг.1 изображен испаритель топлива ДВС с испарительным устройством в виде секционного пористого металлокерамического блока и системой регулирования подачи топлива, на фиг.2 - испаритель топлива ДВС с испарительным устройством в виде вращающейся конической пористой металлокерамической трубы. Испаритель топлива ДВС (см. фиг. 1) содержит испарительную камеру 1, выполненную в виде двухфазного термосифона с паровым 2 и конденсационным 3 участками теплоносителя 4, например воды. Внутри испарительной камеры 1 размещено испарительное устройство 5 с наружными стенками 6, выполненное в виде секционного пористого металлокерамического блока, изготовленного, например, по технологии самораспространяющегося высокотемпературного синтеза. С испарительным устройством 5 соединены патрубок 7 отвода газообразной фракции топлива в цилиндры ДВС (на чертеже не показаны), патрубок 8 отвода жидкой фракции топлива, подключенный к топливному баку 9, и патрубок 10 регулирования подачи топлива, связанный с механизмом 11 регулирования подачи топлива. Патрубок 10 регулирования подачи топлива выполнен в виде трубчатых элементов, соединенных с секциями пористого металлокерамического блока. Механизм 11 регулирования подачи топлива выполнен в виде крана, например, трехходового, подключенного связью управления 12, например механической, к дроссельной заслонке 13, размещенной в патрубке 7 отвода газообразной фракции топлива, а также подсоединенного, например, механической связью, к педали акселератора (на чертеже не показаны). Система подачи топлива содержит топливный бак 9, соединенный с насосом 14, ресивером 15 и механизмом 11 регулирования подачи топлива трубопроводами 16 и 17 соответственно, а также связанный с испарительным устройством 5 патрубком 8 отвода жидкой фракции топлива. В качестве топлива может быть использован метанол. Трубопровод 18 предназначен для подачи топлива от механизма 11 регулирования подачи топлива через патрубок 10, выполненный в виде трубчатых элементов, к секциям пористого металлокерамического блока испарительного устройства 5. Кроме этого, испаритель топлива ДВС снабжен устройством 19 для подвода отработавших газов ДВС к испарительной камере 1, нагревающим теплоноситель 4. Испаритель топлива ДВС с испарительным устройством в виде секционного пористого металлокерамического блока и системой регулирования подачи топлива работает следующим образом. Топливо из бака 9 насосом 14 по трубопроводу 16 подается в ресивер 15, где поддерживается рабочее давление, и по трубопроводу 17 - к крану. Кран, например, трехходовой, механизма 11 регулирования подачи топлива в зависимости от положения педали акселератора посредством связи управления 12 включает в работу одновременно одну или несколько секций пористого металлокерамического блока, представляющего собой испарительное устройство 5, путем подачи топлива по трубопроводу 18 и патрубку 10, выполненному в виде трубчатых элементов, к испарительному устройству 5. Испарение топлива осуществляется из слоев пористой структуры металлокерамического блока испарительного устройства 5, нагреваемых через стенки 6 газообразной фазой теплоносителя 4, т.е. на паровом участке 2 теплоносителя 4. Газообразная фракция топлива выходит из испарительного устройства 5 и по патрубку 7, минуя дроссельную заслонку 13, подается в цилиндры ДВС. Теплоноситель 4 нагревается отработавшими газами, поступающими к испарительной камере 1 по устройству 19 для подвода отработавших газов ДВС, до температуры парообразования. В свою очередь газообразная фаза теплоносителя 4 на паровом участке 2 нагревает через стенки 6 топливо, находящееся в испарительном устройстве 5, выполненном в виде секционного пористого металлокерамического блока, до температуры выше конечной температуры кипения (испарения). Пар теплоносителя 4 конденсируется на стенках 6, отдавая теплоту фазового перехода топливу. Неиспарившаяся часть жидкой фракции топлива из испарительного устройства 5 через патрубок 8 возвращается в топливный бак 9. Испаритель топлива ДВС (см. фиг. 2) содержит испарительную камеру 1, выполненную в виде двухфазного термосифона с паровым 2 и конденсационным 3 участками теплоносителя 4, например воды. Внутри испарительной камеры 1 осесимметрично ей размещено испарительное устройство 5 с наружной стенкой 6, выполненное в виде конической пористой металлокерамической трубы, изготовленной, например, по технологии самораспространяющегося высокотемпературного синтеза. Коническая пористая металлокерамическая труба установлена коаксиально наружной стенке 6 и соединена сужающейся частью с патрубком 7 отвода газообразной фракции топлива в цилиндры ДВС (на чертеже не показаны). Патрубок 8 отвода жидкой фракции топлива подключен к топливному баку 9 и к испарительному устройству 5. Система подачи топлива содержит топливный бак 9, соединенный с насосом 14 и ресивером 15 трубопроводами 16 и 17 соответственно, а также связанный с испарительным устройством 5 патрубком 8 отвода жидкой фракции топлива. В качестве топлива может быть использован метанол. Испаритель топлива ДВС также снабжен устройством 19 для подвода отработавших газов ДВС к испарительной камере 1, нагревающим теплоноситель 4. Испарительное устройство 5 выполнено с возможностью вращения вокруг своей оси в подшипниках 20 посредством двигателя, например электродвигателя (на чертеже не показан), связанного со шкивом 21. Изготовление пористой металлокерамической трубы конической формы позволяет равномерно по длине распределить поступающее топливо. При этом количество топлива будет возрастать пропорционально увеличению оборотов вращения трубы. Испаритель топлива ДВС с испарительным устройством в виде вращающейся конической пористой металлокерамической трубы работает следующим образом. Топливо из бака 9 насосом 14 по трубопроводу 16 подается в ресивер 15, где поддерживается рабочее давление, и далее по трубопроводу 17 - в полость конической пористой металлокерамической трубы, представляющей собой испарительное устройство 5. При вращении конической пористой металлокерамической трубы в подшипниках 20 от двигателя посредством шкива 21 топливо равномерно распределяется в объеме ее пористой структуры. При нагреве наружной стенки 6 и конической пористой металлокерамической трубы, представляющей собой испарительное устройство 5, установленное коаксиально наружной стенке 6, за счет энергии фазового перехода теплоносителя 4 из жидкого в газообразное состояние осуществляется испарение топлива, пары которого поступают в патрубки 7 отвода газообразной фракции, а затем - в цилиндры двигателя внутреннего сгорания. Нагрев внешней поверхности наружной стенки 6 и конической пористой металлокерамической трубы производится за счет энергии фазового перехода теплоносителя 4 из жидкого в газообразное состояние при вращении этой трубы. Жидкая фаза теплоносителя 4 за счет центробежных сил размещается на внутренней поверхности испарительной камеры 1 и нагревается вследствие утилизации остаточной энергии отработавших газов ДВС, поступающих внутрь устройства 19 для подвода отработавших газов. Неиспарившаяся часть жидкой фракции топлива из испарительного устройства 5 через патрубок 8 возвращается в топливный бак 9. Способ работы испарителя топлива осуществляется следующим образом. Топливо подают в зону испарения для разделения на газообразную и жидкую фракции. Топливо для разделения на фракции нагревают энергией фазового перехода теплоносителя из жидкого в газообразное состояние, подогревая теплоноситель в испарительной камере до температуры парообразования. Для подогрева теплоносителя используют отработавшие газы ДВС. Испарение нагретого топлива осуществляется в зоне испарения из слоев пористой структуры испарительного устройства. Таким образом, топливо нагревают до температуры выше конечной температуры испарения (парообразования) газообразной фазой теплоносителя вследствие того, что пар теплоносителя конденсируется на наружных стенках испарительного устройства, отдавая теплоту фазового перехода топливу. Далее газообразную фракцию топлива подают в цилиндры ДВС, а неиспарившуюся часть жидкой фракции топлива после его подачи в зону испарения возвращают в эту зону. Примеры конкретного выполнения способа. Способ работы испарителя топлива с испарительным устройством в виде секционного пористого металлокерамического блока и системой регулирования подачи топлива реализуется следующим образом (см. фиг. 1). Топливо подают в зону испарения, образованную испарительным устройством 1, выполненным в виде секционного пористого металлокерамического блока, из топливного бака 9 посредствам насоса 14, ресивера 15, трубопроводов 16 и 17, через механизм 11 регулирования подачи топлива в зависимости от положения педали акселератора посредством связи управления 12, трубопровод 18 и патрубок 10, выполненный в виде трубчатых элементов. В зону испарения топливо подают для разделения на газообразную и жидкую фракции из слоев пористой структуры металлокерамического блока, представляющего собой испарительное устройство 5. Топливо для разделения на фракции нагревают энергией фазового перехода теплоносителя 4 из жидкого в газообразное состояние, подогревая теплоноситель 4 в испарительной камере 1 до температуры парообразования. Для подогрева теплоносителя 4 используют отработавшие газы ДВС, поступающие к испарительной камере 1, выполненной в виде двухфазного термосифона с паровым 2 и конденсационным 3 участками теплоносителя, посредством устройства 19 для подвода отработавших газов к испарительной камере. Испарение нагретого топлива осуществляется в зоне испарения из слоев пористой структуры испарительного устройства 5. Далее газообразную фракцию топлива подают патрубком 7 в цилиндры ДВС, минуя дроссельную заслонку 13. Неиспарившуюся часть жидкой фракции топлива после его подачи в зону испарения возвращают в эту зону через патрубок 8, соединенный с топливным баком 9, систему подачи топлива и механизм 11 регулирования подачи топлива. Таким образом, нагрев топлива, например метанола, до температуры выше конечной температуры испарения (парообразования) газообразной фазой теплоносителя 4 осуществляют за счет того, что пар теплоносителя 4, нагретого отработавшими газами ДВС, конденсируется на наружных стенках 6 испарительного устройства 5, отдавая топливу теплоту фазового перехода. Способ работы испарителя топлива с испарительным устройством в виде вращающейся конической пористой металлокерамической трубы (см. фиг. 2) реализуется следующим образом. Топливо подают в зону испарения, образованную испарительным устройством 1, осесимметрично размещенным внутри испарительной камеры 1 с возможностью вращения вокруг своей оси, выполненным в виде конической пористой металлокерамической трубы, из топливного бака 9 посредством насоса 14, ресивера 15, трубопроводов 16 и 17. При этом осуществляют равномерное распределение топлива в объеме пористой структуры испарительного устройства 5 вследствие вращения этого устройства в подшипниках 20. Топливо подают в зону испарения для разделения на газообразную и жидкую фракции из объема пористой структуры конической металлокерамической трубы, представляющей собой испарительную камеру 5. Топливо для разделения на фракции нагревают энергией фазового перехода теплоносителя 4 из жидкого в газообразное состояние, подогревая теплоноситель 4 в испарительной камере 1 до температуры парообразования. Для подогрева теплоносителя 4 используют отработавшие газы ДВС, поступающие к испарительной камере 1, выполненной в виде двухфазного термосифона с паровым 2 и конденсационным 3 участками теплоносителя 4, посредством устройства 19 для подвода отработавших газов к испарительной камере. Таким образом нагрев жидкой фазы теплоносителя 4, расположенной на внутренней поверхности испарительной камеры 1 за счет центробежных сил, осуществляют путем утилизации остаточной энергии отработавших газов ДВС, поступающих внутри устройства 19. Испарение нагретого топлива производится в зоне испарения из слоев пористой структуры испарительного устройства 5. Далее газообразную фракцию топлива подают из сужающейся части испари тельного устройства 5 патрубком 7 в цилиндры ДВС. Неиспарившуюся часть жидкой фракции топлива после его подачи в зону испарения возвращают в эту зону через патрубок 8, соединенный с топливным баком 9 и систему подачи топлива. Таким образом, нагрев топлива, например метанола, до температуры выше конечной температуры испарения (парообразования) газообразной фазой теплоносителя 4 осуществляют за счет того, что пар теплоносителя 4, нагретого отработавшими газами ДВС, конденсируется на наружных стенках 6 испарительного устройства 5, отдавая топливу теплоту фазового перехода. Предлагаемый способ работы испарителя топлива ДВС и испарители топлива ДВС, реализующие этот способ, позволяют снизить расход топлива, обеспечить низкую токсичность отработавших газов вследствие качественного смесеобразования топливовоздушной смеси для питания ДВС, а также эффективность испарения топлива. Ыр

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ работы испарителя топлива двигателя внутреннего сгорания путем подачи топлива в зону испарения, причем топливо нагревают энергией фазового перехода теплоносителя из жидкого в газообразное состояние, подогревая теплоноситель, а для подогрева теплоносителя используют отработавшие газы двигателя внутреннего сгорания, отличающийся тем, что в зону испарения топливо подают для разделения на газообразную и жидкую фракции из слоев пористой структуры металлокерамического блока, представляющего собой испарительное устройство 2. Испаритель топлива двигателя внутреннего сгорания, содержащий испарительную камеру, выполненную в виде термосифона с паровым и конденсационным участками теплоносителя, испарительное устройство с наружными стенками, размещенное внутри этой камеры, патрубки отвода газообразной и жидкой фракции топлива, соединенные с испарительным устройством, патрубок регулирования подачи топлива, связанный с механизмом регулирования подачи топлива и испарительным устройством, систему подачи топлива, подключенную к испарительному устройству, отличающийся тем, что испарительное устройство выполнено в виде секционного пористого металлокерамического блока, патрубок регулирования подачи топлива - в виде трубчатых элементов, связанных с секциями пористого металлокерамического блока, механизм регулирования подачи топлива подсоединен к акселератору и дроссельной заслонке, размещенной в патрубке отвода газообразной фракции топлива, при этом испаритель топлива дополнительно снабжен устройством для подвода отработавших газов к испарительной камере, а система подачи топлива подключена к испарительному устройству патрубком отвода жидкой фракции топлива. 3. Испаритель топлива двигателя внутреннего сгорания, содержащий испарительную камеру, выполненную в виде термосифона с паровым и конденсационным участками теплоносителя, испарительное устройство с наружной стенкой, размещенное внутри этой камеры, патрубки отвода газообразной и жидкой фракций топлива, соединенные с испарительным устройством, систему подачи топлива, подключенную к испарительному устройству, отличающийся тем, что испарительное устройство, осесимметрично размещенное внутри испарительной камеры с возможностью вращения вокруг своей оси, выполнено в виде конической пористой металлокерамической трубы, соединенной сужающейся частью с патрубком отвода газообразной фракции топлива и установленной коаксиально наружной стенке, при этом испаритель топлива дополнительно снабжен устройством для подвода отработавших газов к испарительной камере, а система подачи топлива подключена к испарительному устройству патрубком отвода жидкой фракции топлива.

www.freepatent.ru


Смотрите также