Как сделать горелку Бабингтона. Испаритель бензина своими руками


видео инструкция по изготовлению своими руками

Горелка Бабингтона

Печи и котлы, работающие на отработанном масле, давно заняли достойное место среди отопительных приборов. Отработка — дешевый, а иногда и бесплатный вид топлива, часто ее используют для этой цели в автосервисах и гаражах. Многие мастера при выборе конструкции задаются вопросом: можно ли переделать бензиновую паяльную лампу в горелку на отработке?

Можно ли заставить паяльную лампу работать на отработке?

Паяльная лампа в разрезеПринцип действия обычной паяльной лампы заключается в воспламенении паров бензина, выталкиваемого под действием сжатого воздуха наружу. Этот эффект достигается за счет нагнетания воздуха в топливный бак горелки.

Что произойдет, если залить в паяльную лампу отработанное масло?

Само по себе масло, даже под давлением, испаряется плохо — его нужно нагревать. Из-за плохого распыления пламя будет неравномерным, и разжечь горелку будет сложно. Горит масло с образованием большого количества нагара и копоти, поэтому жиклер быстро закоксуется, уменьшится его сечение, и лампа выйдет из строя. Увеличение сечения жиклера тоже не даст ожидаемого эффекта — масло будет распыляться крупными каплями, что не позволит получить равномерное пламя факела.

Кроме того, отработанное масло часто содержит примеси: солярку, бензин, антифризы и даже воду, что может привести к вспышкам внутри лампы. Для использования отработки в качестве топлива для паяльной лампы придется устраивать систему фильтрации, что еще больше усложнит задачу.

Учитывая все сложности, использовать бензиновую паяльную лампу как горелку на отработке сложно и небезопасно. Поэтому необходимо доработать или полностью изменить ее конструкцию.

Как изготовить горелку на отработке самостоятельно

Для успешного горения масла нужно либо предварительно нагреть его до температуры испарения — примерно 300 градусов Цельсия, или мелко распылить и обогатить масляные пары воздухом. Подогреть масло до таких температур можно с помощью мощных ТЭНов, но это увеличит затраты на электроэнергию.Добиться создания масляного аэрозоля можно, подавая струю сжатого воздуха через слой масла. Этот эффект реализован в горелке Бабингтона — устройстве, аналог которого можно собрать своими руками из подручных комплектующих.

Горелка Бабингтона — альтернатива паяльной лампе

Изначально горелка Бабингтона была запатентована для работы на дизельном топливе. Позже, внеся незначительные изменения в конструкцию, мастера своими руками изменили конструкцию и приспособили горелку для сжигания отработанных машинных и пищевых масел. Степень загрязненности масла при этом особого значения не имеет, так как топливные каналы агрегата лишены узких мест, склонных к засорам.

В отличие от паяльной лампы, где топливно-воздушная смесь распыляется под давлением через форсунки, в горелке Бабингтона масло нагнетается из резервуара с помощью маломощного насоса и стекает тонкой пленкой по наклонной или сферической поверхности, а масляно-воздушная смесь образуется в результате продувания тонкой струи сжатого воздуха сквозь эту пленку.

Эффект распыления наглядно представлен в видео:

Схема работы горелки Бабингтона

    Горелка Бабингтона состоит из нескольких функциональных блоков:
  • Топливный — резервуар, насос и трубы для подачи топлива.
  • Воздушный, он состоит из компрессора и воздушной трубки.
  • Полусфера с отверстием малого диаметра, где происходит смешивание воздушной струи с маслом.
  • Сопло, направляющее факел пламени в нужном направлении.

Основная часть горелки БабингтонаСтандартную конструкцию можно доработать своими руками, повысив ее эффективность. Для этого топливный бак оснащают нагревателем, подогревающим масло до начала работы горелки, что позволяет повысить его текучесть. Кроме того, топливный канал, выполненный из металлической трубки, можно обмотать вокруг сопла — таким образом масло будет нагреваться во время работы горелки.

Сопло горелки направляют в котел, где происходит нагрев топливной камеры и водяной рубашки. Также можно использовать устройство для плавки и нагрева металлов.

Достоинства горелки Бабингтона, сделанной своими руками:

  • широкий выбор топлива — отработанные машинные масла, смазки любой вязкости, дизельное топливо, мазут, любые растительные масла, в том числе отходы пищевых производств;
  • наличие примесей в топливе;
  • простота конструкции — ее можно сделать своими руками.

Недостатки:

  • сложность настройки горелки, особенно часто проявляющаяся при смене вида топлива;
  • запах и грязь — горелку нельзя устанавливать в жилых помещениях, требуется устройство котельной;
  • использование горелки связано с открытым пламенем, поэтому необходимо соблюдать противопожарные меры.
В помещении котельной обязательно должен быть порошковый или солевой химический огнетушитель!

Горелка Бабингтона своими руками

Собрать горелку своими руками можно из простых комплектующих, для этого потребуются:

    • Полый шар или полусфера с такой толщиной стенок, чтобы можно было просверлить отверстие диаметром не более 0,3 мм.Можно использовать любые металлические предметы похожей конфигурации, например, латунную дверную ручку сферической формы, гайки с заглушками. Главное условие — возможность надежного крепления воздуховода.

Важные составные части горелки Бабингтона

  • Металлическая трубка для подачи сжатого воздуха от компрессора, диаметр — 10-15 мм.
  • Компрессор, например, от холодильника, с рабочим давлением 2 атм, максимальным — 4 атм.
  • Топливный бак со встроенным ТЭНом на 0,5-1 кВт из металла, не подверженного коррозии.
  • Топливный отстойник и трубу для слива излишков масла обратно в бак.
  • Медная трубка, диаметр — 10 мм, толщина стенки — 1-1,5 мм для топливного канала.
  • Маслонасос от автомобиля или мотоцикла с электродвигателем, чтобы привести насос в действие. Насос желательно оснастить на входе фильтром с крупной сеткой.
  • Сопло — сгон длиной 200-400 мм с внешней резьбой в 2 дюйма.
  • Крестовина для двухдюймовой металлической трубы с внутренней резьбой.
  • Сгон с резьбой на 1 дюйм и переходник 2/1 дюйм для слива излишка топлива в отстойник.
  • Переходники и фитинги для подсоединения топливного тракта, воздуховода и сопла.

Переходники и фитинги для подсоединения топливного тракта

Подготовка узлов горелки к сборке

Сферическая форсунка для горелки Бабингтона

    1. Основная и самая ответственная задача — сделать отверстие заданного диаметра в сферической форсунке. От его размера зависит мощность горелки. Например, котел тепловой мощностью 10-15 кВт требует горящего факела, получаемого при работе горелки с одним отверстием диаметром 0,2-0,25 мм.Для получения большей мощности не нужно расширять отверстие — это приведет к получению более крупных капель. Лучше сделать 2-4 отверстия диаметром 0,1-0,3 мм с расстоянием между ними 8-10 мм, иначе факелы будут взаимно гаситься.Расход топлива можно рассчитать так: через одно отверстие 0,25 мм распыляется 2 литра отработки в час.

Видео о том, как можно сделать отверстия малого диаметра в металлической полусфере:

    1. Бак делают из коррозионно-стойкого металла. В него встраивают ТЭН с терморегулятором, установленным на отключение ТЭНа при температуре 70 градусов Цельсия.
    2. Из того же материала необходимо сделать отстойник топлива, оснащенный трубой с переливом. По этой трубе масло из отстойника будет стекать обратно в бак. Для слива грязи из отстойника можно предусмотреть заглушку в его дне.

Составные части горелки Бабингтона

  • Собирают корпус горелки: к крестовине 2 дюйма в передней части подсоединяют сопло из сгона, затем переходники: сверху для подачи масла, с задней стороны — для воздуха. Снизу к крестовине подсоединяют переходник 2/1 дюйм и сгон, по которому будет стекать излишек масла в отстойник. Переходники выполняют из заглушек с просверленными отверстиями, в которые вставляют трубки топливного и воздушного канала.

 

Можно изготовить корпус также из тройника, при этом воздуховод заводят в верхнюю часть, предварительно просверлив отверстие нужного диаметра.

  • Топливный тракт делают из медной трубки, один конец которой трижды обматывают вокруг сопла, а затем через переходник-заглушку выводят в корпус в верхней части. Топливную трубу подключают к насосу, устанавливают сетчатый фильтр грубой очистки и заводят другой конец тракта в бак. Топливный тракт можно оснастить вентилем. Насос подключают к электродвигателю, работающему от сети 220 В.

 

Электророзжиг

  • Воздуховод из металлической трубки с одного конца крепят к полусфере с отверстием, предварительно установив переходник-заглушку на нужном расстоянии. Полусфера должна располагаться так, чтобы масло из топливной трубки равномерно стекало на округлую часть форсунки, а потом — в нижнюю часть корпуса и в отстойник. Другую часть воздуховода подводят к компрессору, который также подключают к сети 220 В.
  • Поскольку в установке будет целых три потребителя электроэнергии, включение которых производится не одновременно, желательно оснастить горелку пультом управления: установить отдельный тумблер или кнопку для включения ТЭНа и отдельный тумблер для включения компрессора и насоса. При желании можно оснастить пульт световой сигнализацией из диодных ламп.
  • Можно оснастить горелку контролёром, автоматически включающим агрегаты в соответствии с выбранным режимом. Электророзжиг реализуют с помощью свечей зажигания, а для гашения горелки достаточно перекрыть подачу масла.

 

Видео — схема сборки горелки:

Подготовка топлива для горелки

В горелке Бабингтона можно использовать практически любое отработанное масло. Автомобильную отработку с большим количеством посторонних включений фильтруют перед заливкой в бак через сетку и смешивают с более чистым маслом. Масла с незначительным количеством примесей допустимо заливать без подготовки.

При использовании пищевых растительных масел, например, фритюра, рекомендуется отстоять его в течение нескольких часов и аккуратно слить с остатка. Эти масла достаточно текучи при нормальной температуре, поэтому их можно подогревать в баке только в момент запуска горелки. При использовании мазута и других густых материалов их нужно подогревать до температуры от 70 до 90 градусов, иначе насос будет работать с перегрузкой.

Простая и эффективная печь длительного горенияВ данной статье подробно рассматриваем весь процесс изготовления буржуйки длительного горения: от обустройства фундамента до изготовления дымохода. Технологию безопасного разбора газового баллона и последующего изготовления из него буржуйки, работающей на дровах, можно посмотреть здесь О плюсах и минусах печи длительного горения на дровах, сделанной своими руками, читайте: http://gidpopechkam.ru/pechki/dlitelnogo-goreniya-na-drovax.html

Меры безопасности

    Горелка на маслах и других ГСП может быть опасна при неправильной установке и эксплуатации, чтобы избежать пожара, нужно соблюдать ряд мероприятий:
  • полы и стены из горючих материалов обшивают металлом или асбестовыми листами;
  • запас топлива хранят на безопасном расстоянии;
  • потеки масла необходимо своевременно удалять;
  • электрические элементы установки необходимо тщательно изолировать, чтобы избежать искрения в зоне распыления масла;
  • горелку нужно располагать вне досягаемости воздушных потоков и сквозняков.
Горелку с открытым соплом нельзя оставлять без присмотра в работающем состоянии!

Горелка Бабингтона, в отличие от паяльной лампы, переделанной для работы на отработке — надежный и долговечный агрегат, не требующий сложного обслуживания. Достаточно периодически очищать топливную систему, бак и отстойник, продувать воздуховод в холостом режиме, а также следить за исправностью компрессора и масляного насоса. Исправная горелка — надежный и экономичный агрегат с длительным сроком службы.

gidpopechkam.ru

Строим тепловой насос своими руками

Тепловой насос своими руками

С начала имелся только строющийся дом на 2,5 этажа. Площадь:

1 этаж 64 м2,

2 этаж 94 м2,

2,5 этаж 55 м2,

гараж 30 м2.

С самого начала был куплен б/у газогенерационный котёл на дровах мощностью 40 к.в. Но как подошло время инсталляции совсем меня перестала радовать перспектива заготовки дров, извечная борьба с мусором, да и по натуре я больше дервиш, могу запросто пару дней дома не появляться.

( Самодельный тепловой насос, газогенерационный котёл,Испаритель,компрессор,Конденсатор,самодельный тепловой насос,тепловой насос,Тепловой насос своими руками, альтернативная энергия )

И тогда я склонился к сжиженному газу. Замечу, что труба природного газа низкого давления проходит в 1,5 км от дома. Но плотность заселения у нас маленькая, и тянуть трубу ради меня одного + проект + инсталляция просто ввергает меня в ужас.

Ставить бочку на несколько кубов на участке я тоже не могу. Не хочется портить внешний вид. Решил установить пару шкафов с батареей 80-литровых пропановых баллонов из 6 штук в каждом.

Газовый оператор уверял, что сами приезжают, сами меняют, вы лишь только нам позвоните. К неудобствам относил лишь головную боль раз в три недели, а также возможность несанкционированного заезда газовой машины на мою бедующую брусчато-легковую стоянку, качения-волочения баллонов по ней же. В общем человеческий фактор. Но проблему разрешил случай:

Идея построить  тепловой насос своими руками

Идею строительства теплового насоса вынашивал давно. Но камнем преткновения было однофазное электричество и допотопный счётчик на 20 ампер максимальной нагрузки. Поменять эклектическое питание на трёхфазное или прибавить мощность в нашем районе пока нет. Но неожиданно мне планово поменяли счётчик на новый, 40 амперный.

Прикинув, решил, что этого хватит на частичный обогрев (2,5 этаж я не планировал использовать зимой), взялся зондировать рынок тепловых насосов. Запрошенные в одной фирме цены (однофазные ТН на 12 киловат) заставили задуматься:

Thermia Diplomat TWS 12 к.в.ч. 6797 евро

Thermia Duo 12 к.в.ч. 5974 евро

Требовалось не менее 45 ампер на пусковой ток.

К тому же, так как планировалось брать теплосъём со скважинной воды, не было уверенности в дебете моей скважины. Чтобы не рисковать такой суммой решил собрать ТН сам, благо какие-то навыки были из жизни. Работал в бытность менеджером по распространению вентиляционно-кондиционерного оборудования.

 Концепция самодельного теплового насоса:

Решил делать ТН из двух однофазных компрессоров по 24000 БТУ (7 кв.ч. по холоду). Так получался каскад общей тепловой мощностью 16-18 киловат при потреблении электричества при СОP3 около 4-4,5 киловат/часа. Выбор двух компрессоров был обусловлен меньшими стартовыми токами, так как их запуски думано не синхронизировать. А также поэтапность ввода в эксплуатацию. Пока обжит только второй этаж и хватит одного компрессора. Да и поэкспериментировав на одном, потом будет смелее доделать вторую секцию.

Отказался от использования пластинчатых теплообменников. Во первых, из соображения экономии, не хотелось выкладывать за Данфос по 389 евро за штуку. А во вторых, совместить теплообменник с ёмкостью теплоакомулятора, то есть, увеличив инерционность системы, убив тем самым двух зайцев. Да и не хотелось делать водоподготовку для нежных пластинчатых теплообменников, снижая тем самым КПД. А вода у меня плохая, с железом.

Первый этаж уже оснащён обвязкой тёплого пола с примерным шагом 15 см.

Второй этаж радиаторы (слава Богу, хватило скупости поставить их с 1,5 тепловым запасом ранее). Забор теплоносителя из скважины (12,5 м. Установлена на первый слой доломита. +5,9 замер на 03.2008). Утилизация отработанной воды в общедомовую канализацию (двух камерный отстойник + инфильтрационный грунтовый поглотитель). Принудительная циркуляция в контурах теплосъема.

Вот, принципиальная схема:

1. Компрессор (пока один).

2. Конденсатор.

3. Испаритель.

4. Терморегулирующий клапан (ТРВ)

От других устройств безопасности решено отказаться (фильтр-осушитель, смотровое окно, пресостат, ресивер). Но если кто видит смысл их использования, буду рад услышать советы!

Для расчёта системы скачал из Интернета программу расчёта CoolPack 1,46.

И неплохую программку по подбору компрессоров Copeland.

Компрессор:

Удалось закупить у старого знакомого холодильщика, мало б/у-шный компрессор от 7 киловатной сплит системы какого-то корейского кондиционера. Достался практически даром, да и не соврал, масло оказалось внутри совсем прозрачным, поработал всего сезон и был демонтирован в связи изменением концепции помещения заказчиком.

Компрессор оказался на мощность 25500 Бту, а это около 7,5 к.в. по холоду и около 9-9,5 по теплу. Что обрадовало, в корейском сплите стоял добротный компрессор американской фирмы Текумсет. Вот его данные:

Тех. характеристики.

Компрессор на R22 фреоне, а это значит чуть больший коэффициент полезного действия. Температура кипения -10с, конденсации +55с.

Ляпсус номер 1: По старой памяти думал, что на бытовых сплит системах ставятся только компрессоры Скрол типа (спиральные). Мой же оказался поршневым... (Выглядит чуть овальным и внутри болтается обмотка двигателя). Плохо, но не смертельно. К его минусам на четверть меньший ресурс, на четверть меньший коэффициент полезного действия, на четверть более шумный. Но ничего, опыт сын ошибок трудных.

Важно: Фреон R22 по Монреальскому протоколу полностью будет выведен из эксплуатации к 2030 году. С 2001 года запрещён ввод в эксплуатацию ввод новых установок (но я ввожу не новую, а модернизировал старую). С 2010 года использование R22–го фреона только бывшего в эксплуатации. НО в любой момент можно перевести систему с R22 на его заменитель R422. И не испытывать затруднений далее.

Закрепил компрессор на стене кронштейнами L-300мм. Если буду потом монтировать второй, удлиняю имеющиеся с помощью U-профиля.

2. Конденсатор:

У знакомого сварщика удачно приобрёл бак из нержавейки примерно на 120 литров.

(Кстати, все сварные манипуляции с баком безвозмездно произвел уважаемый сварщик. Но просил упомянуть и его скромную роль для истории!)

Было решено разрезать его на две части вставить змеевик из медной трубы фреоновода, и сварить его обратно. Заодно и вварить несколько технических дюймово-резьбовых соединений.

Формула расчёты площади поверхности трубы медного змеевика:

M2 = kW/0,8 x ?t

Где,

M2 - площадь трубы змеевика в квадратных метрах.

kW – Мощность тепловыделения системой (с компрессором) в киловатах.

0,8 – коофициент теплопроводности меди/воды при условии противотока сред.

?t – разность температуры воды на входе и выходе системы (см. Схему). У меня это 35с-30с= +5 градусов Цельсия.

Так получается около 2 квадратных метров площади теплообмена змеевика. Я чуть уменьшил, так как температура на входе фреона около +82с градуса, на этом чуть можно сэкономить. Но как писал ранее Дед Морос, не более чем в размере 25% от размера испарителя!!!

Смоделированная системы в CoolPack показала Cop 2,44 на штатных диаметрах труб теплообменника. И Cop 2,99 при диаметре на шаг выше. А это мне и на руку, так как в будущем рассчитываю присоединить и второй компрессор на эту ветку. Решил использовать медную трубу ½’ дюйма (или 12,7 мм наружного диаметра), холодильную. Но, думаю, можно и обычную сантехническую, не так там и много грязи внутри будет.

Ляпсус номер 2: Использовал трубу со стенкой 0,8 мм. На деле она оказалась очень нежной, чуть передавил и уже она заминается. Сложно работать, тем более без особых навыков. Поэтому рекомендую брать трубу 1мм или 1,2 мм стенки. Так и по долговечности будет дольше.

Важно: Фреоновод змеевика входит в конденсатор сверху, выходит снизу. Так конденсируя жидкий фреон будет скапливаться внизу и уходит без пузырьков.

Взяв, таким образом, 35 метров трубы свернул её в змеевик, намотав на удобный цилиндрический предмет (баллон).

По краям зафиксировал витки двумя алюминиевыми рейками для прочности и равношаговости петель.

Концы вывел наружу с помощью сантехнических переходов на медную тубу на скрутку. Чуть рассверлит их с диаметра 12 на 12,7мм, и вместо обжимного кольца после сборки намотал льна на герметике и зажал контргайкой.

3. Испаритель:

Для испарителя не требовалось высокой температуры, и я выбрал пластмассовую ёмкость типа бочки на 127 литров с широкой горловиной.

Важно: Идеально подошла бы бочка на 65 литров. Но побоялся, труба ¾ очень плохо гнётся, поэтому взял размер побольше. Если у кого другие размеры или есть хороший трубогиб и навыки работы, то можно рискнуть и на этот размер. С бочкой 127 литров размеры моего ТН повысили ожидаемые габариты на 15 см вверх, 5 см в глубину и 10 см в ширину.

Рассчитал и изготовил испаритель по такому же принципу как и у конденсатора. Понадобилось 25 метров трубы ¾’ дюйма (19,2мм наружный) со стенкой 1,2мм. Как рёбра жёсткости использовал отрезки UD профиля для монтажа регипса. Скрутил обычной медной электротехнической проволокой без изоляции.

Важно: Испаритель затопленного типа. То есть жидкая фаза фреона заходит в охлаждаемую воду снизу, испаряется и в газообразном состоянии поднимается вверх к компрессору. Так лучше для теплопередачи.

Переходы можно взять пластмассовые от питьевой трубы PE 20*3/4’ с наружной резьбой, свинтив из с бочкой контргайками и уплотнением из льна и герметика. Подачу и сток воды сделал из обычных канализационных труб и резиновых уплотняющих манжет вставленных враспор.

Испаритель также был установлен на кронштейны L-400мм.

4. ТРВ:

Приобрёл ТРВ фирмы Honeywell (бывшая FLICA). На мою мощность потребовалась дюза к нему 3мм. И наличие выравнивателя давления.

Важно: ТРВ во время пайки нельзя перегреть выше +100с! Поэтому обматал его тряпочкой пропитанной водой для охлаждения. Прошу не ужасаться, после налёт почистил мелкой наждачной.

Припаял трубку линии выравнивания как положено к инструкции по монтажу ТРВ.

Сборка:

Прикупил комплект для жёсткой пайки Rotenberg. И электроды 3 штуки с 0% содержания серебра и 1 штуку с 40% содержания серебра для пайки в стороне компрессора (вибростойкий). С их помощью собрал всю систему.

Важно: Берите сразу баллон Максигаз 400 (жёлтый баллон)! Он не многим дороже Мультигаза 300 (красный), но производитель обещает до +2200с пламени. Но и этого недостаточно для ¾’ трубы. Паялось из рук вон плохо. Приходилось изловчаться, использовать тепловой экран, и т.д. В идеале конечно иметь кислородную горелку.

Да, и надо впаять в систему заправочный пипсик с ниппелем для подсоединения шланга. Не помню с головы его точное название.

Его впаял на входе в компрессор. Рядом же видна и входная труба выравнивателя ТРВ. Она впаивается после испарителя, термобаллона ТРВ, но до компрессора.

Важно: Заправочный пипсик паяем предварительно вывернув из него ниппель. Ни то от жары уплотнитель ниппеля однозначно выйдет из строя.

Редукционные тройники не использовал, так как боялся уменьшения надёжности от дополнительных паечных швов вблизи компрессора. Да и давление в этом месте не большое.

Заправка фреоном:

Собранную, но не заполненную водой систему надо вакуумировать. Лучше использовать вакуумный насос, если нет, то умельцы приспосабливают обычный компрессор от старого холодильника. Можно и просто, продуть-продавить систему фреоном выдавив воздух, но я вам этого не говорил, потому что так делать нельзя!

Баллон фреона самой небольшой ёмкости. Для системы вообще не нужно будет более 2 кг. фреона. Но чем богаты.

Также я приобрёл манометр для замера давления. Но не специальный фреоновый за 10 у.е., а обычный для насосной станции за 3,5 у.е. По нему и ориентировался при заполнении.

Заправил систему, на сколько возможно с помощью внутреннего давления фреона в баллоне. Дал постоять пару дней, давление не упало. Значит, утечки нет. Дополнительно промазал все соединения мыльной пеной, не пузырило.

Важно: Так как в моём случае заправочный ниппель впаян сразу перед компрессором (в дальнейшем будет замеряться давление в этом месте при настройке) ни в коем случае не заправлять систему с работающим компрессором жидким фреоном. Компрессор наверняка выйдет из строя. Только газообразной фазой - баллоном вверх!

Автоматика:

Необходимо однофазное пусковое реле, и при этом, на очень приличный пусковой ток около 40 А! Автоматический предохранитель С группы на 16А. Электрический щиток с DIN рейкой.

Также установил два реле температуры с копелярными термодатчиками. Один поставил на воду на выходе из конденсатора. Выставил примерно на 40 градусов, чтобы отключал систему при достижении водой этой температуры. И на выход воды из испарителя на 0 градусов, чтобы аварийно отключал систему и не разморозил её случаем.

В будущем думаю приобрести простейший контроллер, который учитывает эти две температуры. Но кроме внешнего вида и наглядности пользования у него есть и недостаток – запрограмированные значения сбиваются при даже кратковременном перебои электроснабжения. Пока в раздумьях.

Запуск (пробный):

Перед запуском напумповал в систему примерно 6 бар давления из баллона. Больше не получалось, да и незачем. Кинул временный провод, подсоединил пусковой конденсатор. Наполнил ёмкости водой предварительно. Они постояли с сутки, наполненные и потому, на момент запуска имели комнатную температуру около +15с.

Торжественно включил автомат. Его сразу же выбило. Ещё, то же самое. В этот небольшой промежуток слышно как двигатель гудит, но не запускается. Перебросил клеммы на конденсаторе (их почему-то три). Включил снова автомат. Приятный рокот работающего компрессора приласкал мой слух!!!

Давление на всасывании сразу упало до 2 бар. Открыл баллон с фреоном, чтобы система заполнялась. По табличке рассчитал необходимое давление кипения фреона.

Для моих необходимых на входе +6 и выходе воды +1, требуется температура кипения -4с. Фреон кипит при такой температуре при давлении 4,3 кг.см. (бар) (атмосфер). Таблицу можно найти и в Интернете.

Как не пытался выставить точное это давление, ничего не получалось. Система пока ещё не выведена на рабочий режим температур. Потому преждевременные регулировки лишь примерны.

Через минут пять подача достигла примерно +80 градусов. Пока не изолированная труба испарения покрылась лёгким инеем. Вода в конденсаторе через минут десять на ощупь уже нагрелась до +30 - +35. Вода в испарителе приблизилась к 0с. Чтобы чего не разморозить отключил систему.

Резюме: Пробный запуск показал полную работоспособность системы. Аномалий не замечено. Потребуется дальнейшие регулировки ТРВ и давления фреона после подключения контура отопления и охлаждения скважинной водой. Поэтому продолжение фоторепортажа и отчёта примерно через две-три недели, когда разберусь с этой частью работы.

К тому моменту, думаю:

1. Подсоединить контур обогрева помещений и контур теплообмена скважинной водой.

2. Произвести полный цикл пусконаладочных работ.

3. Изготовить какой-то корпус.

4. Сделать выводы и дать небольшое резюме.

Важно: ТН получился не такой уж маленький по размерам. Применив за место ёмкостных теплообменников пластинчатые, можно очень сильно сэкономить пространство.

Затраты на изготовление Теплового насоса примерной мощностью 9 киловат час по теплу:

Конденсатор:

Бак нержавейка 100 литров - 25 у.е.

Электроды нержавейка – 6 у.е.

Муфты нержавейка – 5 у.е.

Услуги сварщика (обед) – 5 у.е.

Медная труба 12,7 (1/2”)*0,8мм. 35 метров – 105 у.е.

Медная труба 10*1 мм. 1 метр – 3 у.е.

Переходы на медь (комплект) – 3 у.е.

Отвоздушиватель Ду 15 – 5 у.е.

Предохранительный клапан 2,5 бар – 4 у.е.

Кран сливной Ду 15 – 2 у.е.

Итого: 163 у.е. (к сравнению, пластинчатый теплообменник Данфос 389 у.е)

Испаритель:

Бочка пласм. 120 литров - 12 у.е.

Медная труба 19.2 (3/4”)*1.2мм. 25 метров – 130 у.е.

Медная труба 6*1мм. 1 метр – 2 у.е.

Терморегулирующий вентиль Honeywell (дюза 3мм.) – 42 у.е.

Кронштейны L-400 2 штуки – 9 у.е.

Кран сливной Ду 15 – 2 у.е

Переходы на медь (комплект) – 3 у.е.

РВС труба 50-1м. 2 штуки – 4 у.е.

Резиновые переходы 75*50 2 штуки – 2 у.е.

Итого: 206 у.е. (к сравнению, пластинчатый теплообменник Данфос 389 у.е)

Компрессор:

Компрессор мало б/у 7,2 к.в. (25500 бту) – 30 у.е.

Кронштейны L-300 2 штуки – 8 у.е.

Фреон R22 2 кг. – 8 у.е.

Комплект монтажный – 4 у.е.

Итого: 50 у.е.

Монтажный комплект:

Паяльная лампа ROTENBERG (комплект) – 20 у.е.

Электроды жёсткой пайки (40% серебра) 3 штуки – 3,5 у.е.

Электроды жёсткой пайки (0% серебра) 3 штуки – 0,5 у.е.

Манометр для фреона 7 бар – 4 у.е.

Шланг заправочный - 7 у.е.

Итого: 35 у.е.Автоматика:

Реле пускателя однофазное 20 А – 10 у.е.

Щиток электрический встраиваемый – 8 у.е.

Предохранитель однофазный С16 А – 4 у.е.

Итого: 22 у.е.

Итого в целом 476 у.е.

Важно: Потребуются на следующем этапе ещё циркуляционные насосы Calpada 25/60-180 60 у.е. и Calpeda 32/60-180 78 у.е. Они хоть и будут вынесены за приделы моего котла, но обычно относятся к самому котлу.

источник

Тепловой насос, альтернативная энергия, отопление, энергосбережение, тепловой насос воими руками, самодельный тепловой насос

 

www.ecotoc.ru

Горелка Бабингтона на отработке своими руками: чертежи, принцип работы, расход

Идея об использовании отработанного масла в качестве энергоносителя для обогрева зданий далеко не нова. Ввиду большого количества отработки на станциях техобслуживания автомобилей, особенно грузовых, возникла проблема с ее утилизацией. Неудивительно, что появились различные агрегаты как заводского, так и кустарного изготовления, позволяющие эффективно сжигать данную субстанцию и получать от нее тепловую энергию. Одно из подобных устройств — горелка Бабингтона на отработанном масле, ее мы и рассмотрим в данном материале, а также расскажем, как ее можно сделать самостоятельно.

Что такое горелка Бабингтона?

Конструкция горелки, работающей на дизельном топливе, была запатентована Робертом Бабингтоном в 1979 году. Однако, срок действия патента истек, после чего вся информация об устройстве и принципе действия агрегата стала общедоступной, как и чертежи горелки Бабингтона. В результате многие мастера смогли повторить данную конструкцию, только вместо солярки в них применялось отработанное автомобильное масло, а позже и другие виды жидких масел.

Эффективно сжигать старые масла нелегко, так как отработка из того же автосервиса представляет собой смесь масел различной вязкости с большим количеством примесей. Также в малых долях там содержится бензин, дизельное топливо и даже антифриз. Все эти моменты учитывает конструкция горелок заводского изготовления, в них встроены фильтрующие элементы.

Другое дело – горелка Бабингтона, для ее работы никакого фильтрования не требуется, и вот почему. Топливо в ней стекает по сферической поверхности, образуя тонкую пленку, а по центру этой сферы проделано небольшое отверстие (0.1—0.3 мм в диаметре) для подачи воздуха под давлением. Основной принцип работы горелки на отработке состоит в том, что воздух, пробивающийся из отверстия, отрывает часть стекающего по поверхности масла. В результате получается факел из топливовоздушной смеси, способной к воспламенению.

Количество грязи в отработке влияет только на эффективность сжигания, горелка работает на отработке и не засоряется взвешенными в ней примесями, поскольку в топливном тракте нет узких проходов или отверстий с малыми диаметрами, как в форсунках. Отверстие здесь лишь одно, сквозь него проходит только воздух. Вместо сложной системы фильтрации устройство горелки на отработанном масле предусматривает подачу горючего на сферическую поверхность, а его излишки, не попавшие в факел, стекают вниз, в отстойник.

Непременным условием качественного сжигания есть предварительный подогрев старых масел. Это необходимо по 2 причинам:

  • Повышение текучести. Благодаря этому субстанция хорошо обволакивает поверхность сферы и при подаче воздуха лучше распыляется, образуя устойчивый факел аэрозоля.
  • Снижение температуры вспышки. С помощью нагретого масла проще обеспечить розжиг для горелки Бабингтон, а при работе она максимально использует энергию топлива, выделяя больше тепла.

Как функционирует данная горелка, наглядно показано на видео:

Чем отличается паяльная лампа от горелки Бабингтона

Часто работу горелки с наддувом сравнивают с горением всем хорошо известной паяльной лампы. И действительно, их устройство имеет определенные сходства. А вот принцип действия абсолютно разный. В паяльной лампе бензин, находящийся в закрытой емкости, подвергается воздействию избыточного давления воздуха, создаваемого ручным насосом. Этот воздух не смешивается с горючим, а только выталкивает его в наверх, к форсунке. По пути бензин прогревается и испаряется в кожухе трубы, после чего поступает в жиклер форсунки. Выходя из него, горючее смешивается с воздухом и сгорает, образуя мощный факел пламени.

Все происходит наоборот в вертикальной горелке Бабингтона на отработке. Через форсунку продувается воздух, а не топливо, при этом загрязненное масло не испаряется, а только подогревается до определенной температуры (не более 70 ºС). При этом жидкость сгорает не полностью, часть ее уходит в отстойник. Из-за того, что отработку испарить и подать сквозь форсунку в зону горения чрезвычайно сложно, изготовить горелку на отработке из паяльной лампы не представляется возможным. Как и заправлять бабингтоновский агрегат бензином, это не только неэффективно, но и просто опасно.

Преимущества и недостатки

Главное достоинство, из-за которого обрела широкую популярность самодельная горелка на отработке Бабингтон, — это ее всеядность, о чем уже говорилось выше. По сути, на сферическую поверхность можно лить какое угодно нагретое масло разумной степени загрязненности, правильно сделанная горелка будет все равно устойчиво работать. Не страшны ей и примеси бензина или антифриза, разве что их соотношение с маслом будет один к одному, тогда неизбежно возникнут проблемы. И то, это вовсе не повод избавляться от подобной смеси, для нормального функционирования горелки на отработанном масле ее потребуется хорошо разбавить «правильной» отработкой, а потом пускать в дело.

Другое преимущество – это простота конструкции, из-за чего мастера – умельцы быстро освоили данное изделие. И правда, изготовить «сердце» аппарата из шара или полусферы, помещенного в корпус, достаточно просто. Несколько сложнее организовать топливоподачу и нагнетание воздуха, да еще настроить всю систему, чтобы горелка Бабингтона, сделанная своими руками, работала устойчиво и безопасно. Но зато здесь есть широкий простор для внедрения различных технических решений.

Из серьезных недостатков агрегата бросается в глаза лишь один. Это постоянное наличие грязи в помещении, где функционирует горелка на жидком топливе. К сожалению, невозможно полностью исключить случайный разлив или просачивание загрязненного машинного масла через неплотности, даже если все сопряжения герметичны и установлена автоматика горелки Бабингтона. В той или иной степени грязно в помещении будет, с этим придется смириться.

Рекомендации по изготовлению

Благодаря своей популярности и простоте горелка для котла на отработке изготавливается мастерами в разных вариациях, мы же возьмемся описать самую простую конструкцию, которая будет доступна для повтора в домашних условиях. Для начала нужно подобрать необходимые материалы, вот их перечень:

  • Стальной тройник с внутренними резьбами диаметром 50 мм – для корпуса.
  • Сгон с наружной резьбой диаметром 50 мм – для сопла. Длина его принимается по желанию, но не менее 100 мм – для сопла.
  • Колено из металла ДУ10 с наружными резьбами – для подключения топливной магистрали.
  • Трубка медная ДУ10 необходимой длины, но не менее 1 м – на топливную магистраль.
  • Металлический шар или полусфера, свободно входящая в тройник – для рабочей части.
  • Стальная трубка не менее ДУ10 – на подключение воздушного тракта.

Чтобы сделать горелку на отработке своими руками, надо произвести одну точную операцию – проделать отверстие по центру сферы. Диаметр отверстия – от 0.1 до 0.4 мм, идеальный вариант – 0.25 мм. Сделать его можно 2 способами: просверлить инструментом соответствующего диаметра либо установить готовый жиклер на 0.25 мм.

Важно! Отверстие надо проделать строго по центру, а его ось должна быть параллельна стенкам корпуса (тройника), в котором будет установлена сфера. Отклонение допускается минимальное, иначе факел будет бить в сторону, что отразится на стабильной работе и расходе горелки.

Проделать точно столь маленькое отверстие нелегко, тонкие сверла запросто ломаются. Инструкция, как это правильно сделать, показана ниже:

Другой способ выполнить калиброванное отверстие в сферической части автономной горелки – вставить туда жиклер требуемого диаметра. Для этого просверливается отверстие, чей диаметр чуть меньше наружного диаметра жиклера, и обрабатывается разверткой. Жиклер запрессовывается внутрь и полируется, как рассказано на видео:

Примечание. Если нужно изготовить горелки большой мощности, то диаметр жиклера можно увеличить до 0.4—0.5 мм либо просверлить 2 малых отверстия, соблюдая между ними расстояние не меньше 7 мм.

Когда эта операция завершена, производим сборку горелки, опираясь на чертеж:

Сбоку сопла надо выполнить отверстие достаточно широкое, чтобы производить розжиг агрегата. Спираль нагрева горючего не нужна большая, достаточно 2—3 витков. Готовое изделие можно закрепить на монтажной пластине и встроить в любой котел, в том числе и самодельный. По окончании работы нужно присоединить воздушную и топливную магистрали, а потом организовать подачу масла и воздуха. Простейший способ топливоподачи – самотеком, для этого емкость с отработкой подвешивают к стене выше горелочного устройства и прокладывают от нее трубку.

Если же задействовать для перекачки масла насос, то впоследствии можно задействовать датчики контроля и блок управления, тогда у вас получится автоматическая горелка, которую эксплуатировать будет безопаснее. Подробная инструкция по подбору материалов и сборке устройства показана на видео:

Если все сделано правильно и диаметр воздушного отверстия составляет 0.25 мм, то расход топлива у горелки не должен превышать 1 л в час. Черной копоти при горении быть не должно, нужно добиться ровного горения факела. Настройка осуществляется перемещением сферы вперед–назад или изменением давления воздуха. С его нагнетанием справится любой компрессор, даже от холодильника, так как рабочее давление не бывает выше 4 Бар.

 

Заключение

Сделать своими руками горелку Бабингтона – это хорошее решение для тех, кто имеет возможность недорого приобретать старые автомасла. Обладая некоторыми навыками, устройство нетрудно встроить в камеру сгорания с водяной рубашкой и дымоходом, тогда получится самодельный котел на отработанном масле с наддувом для отопления вашего дома.

cotlix.com