Катализатор гидроочистки бензина каталитического крекинга. Гидроочистка бензина каталитического крекинга


СПОСОБ ГИДРООЧИСТКИ БЕНЗИНА КАТАЛИТИЧЕСКОГО КРЕКИНГА

Изобретение относится к способам селективной гидроочистки бензина каталитического крекинга (БКК) с получением продукта - компонента товарного бензина - с низким содержанием серы при минимальном снижении октанового числа.

Получение моторных топлив с низким содержанием серы является одной из наиболее важных задач современной нефтепереработки. В настоящее время Россия переходит к производству дизельных топлив и бензинов, соответствующих экологическому классу 5 в соответствии с техническим регламентом Таможенного союза "О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и мазуту" (18.10.2011) и содержащих не более 10 ppm серы. БКК является одним из основных компонентов товарных бензинов. Доля БКК в бензиновом фонде НПЗ составляет 30-40%, при этом вместе с БКК в компаундированные бензины поступает до 95% количества серы [Sylvette Brunet, Damien Mey, Guy Perot, Christophe Bouchy, Fabrice Diehl. On the hydrodesulfurization of FCC gasoline: a review. Applied Catalysis A: General. - 2005. - 278. P. 143-172]. Для получения бензинов, соответствующих современным требованиям, необходимо снижение содержания серы в БКК, что, как правило, достигается с использованием процессов гидроочистки.

При проведении гидроочистки БКК наряду с гидрогенолизом серосодержащих соединений протекает также гидрирование олефиновых углеводородов, приводящее к снижению октанового числа БКК. Поэтому актуальной задачей является разработка процессов гидроочистки БКК, позволяющих снизить содержание серы в БКК при минимальном снижении октанового числа.

Известны различные варианты проведения процесса гидроочистки БКК. Одним из подходов является разделение БКК на легкую и тяжелую фракции с последующей гидроочисткой тяжелой фракции и смешением легкой фракции с продуктом гидроочистки тяжелой. Возможны также варианты, при которых легкая фракция подвергается дополнительной демеркаптанизации.

Так, известен способ гидроочистки БКК [Пат. РФ №2242501, C10G 45/08, 05.09.2003], заключающийся в разделения БКК на фракции н.к. - 130-160°C и 130-160°C - к.к. с последующей гидроочисткой тяжелой фракции в присутствии катализатора и смешением легкой фракции с гидроочищенной тяжелой фракцией. Процесс гидроочистки тяжелой фракции проводят при температуре 200-320°C, давлении 1,0-3,5 МПа, объемной скорости подачи сырья 1-10 ч-1 в присутствии катализатора, содержащего, мас. %: 8-19 MoO3 и 2-6 CoO и/или NiO, остальное - Al2O3, полученного пропиткой в два этапа предварительно прокаленного алюмооксидного носителя сначала раствором аммония молибденовокислого, а затем раствором азотнокислого кобальта и/или азотнокислого никеля с промежуточной термообработкой при температуре 100-200°C и конечной прокалкой при 400-650°C. Данный способ позволяет получать продукт-компонент товарного бензина с содержанием серы менее 0,05 мас. % при потере октанового числа менее 0,5 пункта. Недостатком такого способа гидроочистки БКК является высокое содержание серы в продукте.

В патенте РФ №2134287, C10G 55/06, 10.08.1999 предложен способ, в соответствии с которым тяжелую нестабильную бензиновую фракцию каталитического крекинга подвергают гидрообессериванию с последующим возвратом ее после гидрообессеривания в ректификационную колонну установки каталитического крекинга и стабилизации ее совместно с негидроочищенной легкой бензиновой фракцией. Изобретение решает задачу снижения содержания серы в бензинах, получаемых в процессе каталитического крекинга, без уменьшения их октановых чисел и снижения содержания в них олефиновых углеводородов. Недостатком такого способа гидроочистки БКК также является высокое содержание серы в продукте.

Известен способ селективной очистки бензиновых фракций каталитического крекинга [Пат. РФ №2372380, C10G 65/04, 29.07.2008] путем их ступенчатого гидрооблагораживания в присутствии алюмооксидных катализаторов в среде водорода при повышенных давлении и температуре с разделением продукта первой ступени на легкую и тяжелую фракции с последующим гидрооблагораживанием тяжелой фракции на второй ступени при температуре 280-340°C, давлении 2-3 МПа, объемной скорости подачи сырья 4-8 ч-1 и смешением полученного продукта после второй ступени гидрооблагораживания с легкой фракцией продукта первой ступени с получением очищенного продукта. Разделение продукта первой ступени или разделение исходного бензина на легкую и тяжелую фракции проводят по температуре 70-90°C при переработке сырья с содержанием серы выше 0,16 мас. %, 90-120°C - при переработке сырья с содержанием серы 0,005-0,16 мас. %. Заявленный способ позволяют уменьшить содержание серы до уровня не более 0,0010 мас. % в бензиновой фракции при минимальном снижении содержания олефиновых углеводородов.

Общим недостатком способов обессеривания БКК, основанных на разделении бензина на легкую и тяжелую фракцию, является существенное усложнение технологической схемы процесса обессеривания БКК, а также высокое содержание серы в продукте в том случае, если легкая фракция не подвергается процессу демеркаптанизации или гидрообессеривания.

Другим вариантом гидроочистки БКК является проведении процесса гидроочистки БКК в присутствии катализаторов, обладающих повышенной селективностью, выражающейся в пониженной степени гидрирования олефиновых углеводородов при заданной глубине обессеривания. Для повышения селективности катализаторов гидроочистки БКК в их состав могут входить модифицирующие добавки, такие как оксид магния и других элементов.

В Пат. US №4140626, C10G 23/02, 20.02.1979 описан процесс гидроочистки БКК с использованием катализатора, содержащего металл группы VIB Периодической таблицы и металл группы VIII Периодической таблицы, осажденные на носитель, содержащий не менее 70 мас. % оксида магния.

Наиболее близким к предлагаемому изобретению является решение, описанное в Пат. US №5348928, B01J 23/85; C10G 45/08, 20.09.1994, в котором гидроочистка БКК производится в присутствии катализатора, содержащего в качестве гидрирующего компонента от 4 до 20 мас. % металла группы VIB Периодической таблицы и от 0,5 до 10 мас. % металла группы VIII Периодической таблицы, а в качестве компонента носителя от 0,5 до 50 вес. % магния и от 0,02 до 10 мас. % щелочного металла.

Недостатком данного способа гидроочистки БКК, а также других способов, основанных на использовании катализаторов с повышенной селективностью, является высокое содержание серы в продукте гидроочистки.

Изобретение решает задачу создания улучшенного способа гидроочистки широкой бензиновой фракции каталитического крекинга, обеспечивающего получение продукта гидроочистки с содержанием серы менее 10 ppm при минимальной степени гидрирования олефиновых углеводородов и снижении октанового числа не более чем на 1,5 пункта по исследовательскому методу и 1,0 пункта по моторному методу.

Задача решается способом гидроочистки бензина каталитического крекинга в присутствии гетерогенного катализатора, содержащего кобальт и молибден в форме оксидов; кремний в форме аморфного алюмосиликата, алюминий в форме γ-Al2O3 и аморфного алюмосиликата, при этом компоненты содержатся в следующих концентрациях, мас. %: MoO3 - 3,0-12,0; CoO - 0,8-4,6; аморфный алюмосиликат -46,6-84,0%; Al2O3 - остальное.

Используемый катализатор имеет удельную поверхность 150-350 м2/г, объем пор 0,3-0,9 см3/г, средний диаметр пор 5-15 нм и сформован в частицы в форме трилистника с диаметром 1,3-1,7 мм и длиной до 20 мм.

Входящий в состав используемого катализатора аморфный алюмосиликат содержит кремний и алюминий в массовом соотношении Si/Al от 0,1 до 0,9.

Перед проведением процесса гидроочистки катализатор подвергают сульфидированию, при этом сульфидирование проводят при температуре 200-400°C, а в качестве сульфидирующего агента используют сероводород либо углеводородную фракцию с добавкой органического сульфида либо полисульфида.

Гидроочистку проводят при температуре 240-320°C, давлении 1,5-3,0 МПа, объемном отношении водород/сырье 100-300 м3/м3, объемной скорости подачи сырья 2-10 ч-1.

Основным отличительным признаком предлагаемого способа гидроочистки БКК по сравнению с прототипом является то, что процесс гидроочистки проводят при температуре 240-320°C, давлении 1,5-3,0 МПа, объемном отношении водород/сырье 100-300 м3/м3, объемной скорости подачи сырья 2-10 ч-1 в присутствии гетерогенного катализатора, содержащего, мас. %: NoO3 - 3,0-12,0; Co - 0,8-4,6; аморфный алюмосиликат с массовым соотношением Si/Al от 0,1 до 0,9 - 46,6-84,0%; Al2O3 - остальное.

Вторым отличительным признаком является использование при проведении гидроочистки БКК катализатора, в состав носителя которого входит 50-90 мас. % аморфного алюмосиликата

Третьим отличительным признаком является то, что входящий в состав катализатора аморфный алюмосиликат содержит кремний и алюминий в массовом отношении Si/Al от 0,1 до 0,9.

Технический эффект предлагаемого способа гидроочистки БКК складывается из следующих составляющих:

1. Проведение процесса гидроочистки в присутствии катализатора, имеющего оптимальный химический состав и оптимальные текстурные характеристики, обеспечивающие получение продукта гидроочистки бензина БКК с низким содержанием серы при минимальной степени гидрирования олефиновых углеводородов и минимальном снижении октанового числа.

2. Аморфный алюмосиликат в составе катализатора, содержащий кремний и алюминий в массовом отношении Si/Al от 0,1 до 0,9, позволяет увеличить селективность катализатора в гидроочистке бензина каталитического крекинга и снизить падение октанового числа бензина при проведении гидроочистки. Кислотные центры алюмосиликата способствуют протеканию реакций изомеризации двойной связи и скелетной изомеризации олефиновых углеводородов, что, с одной стороны, приводит к превращению терминальных олефинов в более устойчивые к гидрированию внутренние олефины, а с другой стороны, способствует образованию более разветвленных углеводородов, обладающих высоким октановым числом.

3. Условия проведения процесса гидроочистки БКК, обеспечивающие достижение низкого содержания серы в продукте гидроочистки при минимальной степени гидрирования олефиновых углеводородов и минимальном снижении октанового числа.

Описание предлагаемого технического решения

Способ гидроочистки бензина каталитического крекинга, заключающийся в пропускании смеси бензина каталитического крекинга и водородсодержащего газа через реактор при температуре 240-320°C, давлении 1,5-3,0 МПа, объемном отношении водород/сырье 100-300 м3/м3, объемной скорости подачи сырья 2-10 ч-1 в присутствии гетерогенного катализатора, содержащего кобальт и молибден в форме оксидов; кремний в форме аморфного алюмосиликата, алюминий в форме оксида алюминия и аморфного алюмосиликата, при этом компоненты содержатся в следующих концентрациях, мас. %: MoO3 - 3,0-12,0; CoO - 0,8-4,6; аморфный алюмосиликат с массовым соотношением Si/Al от 0,1 до 0,9 3,9-84,0%; Al2O3 - остальное; имеющего удельную поверхность 150-350 м2/г, объем пор 0,3-0,9 см3/г, средний диаметр пор 5-15 нм, сформованного в частицы в форме трилистника с диаметром 1,3-1,7 мм.

Для приготовления катализатора используется способ, заключающийся в пропитке гранул предварительно сформованного носителя, содержащего оксид алюминия и аморфный алюмосиликат, водным раствором, содержащим парамолибдат аммония и нитрат кобальта(II), с последующей сушкой и прокалкой гранул катализатора. При этом пропитка может осуществляться по влагоемкости либо из избытка пропиточного раствора. Перед проведением процесса гидроочистки катализатор подвергают сульфидированию, при этом сульфидирование проводят при температуре 200-400°C, а в качестве сульфидирующего агента используют сероводород либо углеводородную фракцию с добавкой органического сульфида либо полисульфида

Сущность изобретения иллюстрируется следующими примерами.

Пример 1. Согласно известному техническому решению

100 г оксида алюминия с влагоемкостью 1,2 см3/г помещают в круглодонную колбу. Затем в колбу с носителем приливают 120 мл водного раствора, содержащего 8,58 г парамолибдата аммония и 5,44 г нитрата кобальта(II). Пропитку проводят в течение 2 ч при постоянном вращении колбы с катализатором, затем сушат при 120°C в течение 12 ч и прокаливают при температуре 538°C в течение 3 ч. Далее 30 г гранул, полученных после прокалки, пропитывают водным раствором, содержащим 3,16 г 6-водного нитрата магния и 0,33 г нитрата натрия, с последующей сушкой при 120°C в течение 12 ч и прокалкой при температуре 427°C в течение 2 ч.

Полученный катализатор имеет следующий состав, мас. %: MoO3 - 6,3%; CoO - 1,4%; MgO - 1,2%; Na2O - 0,3%; Al2O3 - остальное.

Примеры 2-8 иллюстрируют предлагаемое техническое решение.

Пример 2

В лабораторный смеситель помещают 35,3 г порошка гидрооксида алюминия AlOOH, имеющего структуру бемита с размером кристаллов 45-60 Å, со средним размером агломератов 40-50 мкм, содержащего примеси в количестве, мас. %, не более: Na2O - 0,005; Fe2O3 - 0,01; SiO2 - 0,015, и 70 г аморфного алюмосиликата с соотношением Si/Al, равным 0,9. Далее в смеситель добавляют раствор, полученный смешением 100 мл дистиллированной воды и 8,0 мл концентрированной азотной кислоты, имеющей плотность 1,4 г/см3. Готовую массу продавливают через отверстие фильеры, обеспечивающее получение экструдатов готового носителя с сечением в форме трилистника с размером от вершины трилистника до середины основания от 1,3 до 1,7 мм. Затем проводят термообработку, включающую в себя сушку и прокалку. Сушку экструдатов проводят в сушильном шкафу при температуре 110°C. Затем экструдаты прокаливают в муфельной печи при температуре 550°C в течение 4 ч.

Навеску приготовленного носителя массой 50 г помещают в круглодонную колбу. Затем в колбу с носителем приливают 30 мл водного раствора, содержащего 3,43 г парамолибдата аммония и 2,37 г нитрата кобальта(II). Пропитку проводят в течение 1 ч при температуре водяной бани 70°C и постоянном вращении колбы с готовящимся катализатором. По окончании пропитки получены равномерно окрашенные гранулы, не содержащие светлого пятна в центре на изломе. После пропитки гранулы катализаторов сушат при 120°C в течение 4 ч, затем прокаливают при температуре 550°C в течение 3 ч в токе воздуха.

Полученный катализатор имеет следующий состав, мас. %: MoO3 - 5,5%; CoO - 1,1%; аморфный алюмосиликат - 66,5%; Al2O3 - остальное.

Пример 3

Катализатор готовят по методике, аналогичной примеру 2, но при этом в смеситель загружают 11,8 г порошка гидрооксида алюминия AlOOH и 90 г аморфного алюмосиликата с соотношением Si/Al, равным 0,25. Навеску приготовленного носителя массой 50 г пропитывают водным раствором, содержащим 3,43 г парамолибдата аммония и 2,37 г нитрата кобальта(II), при этом объем раствора соответствует влагоемкости навески носителя.

Полученный катализатор имеет следующий состав, мас. %: MoO3 - 5,7%; CoO - 1,1%; аморфный алюмосиликат - 84,0%; Al2O3 - остальное.

Пример 4

Катализатор готовят по методике, аналогичной примеру 2, но при этом в смеситель загружают 35,3 г порошка гидрооксида алюминия AlOOH и 70 г аморфного алюмосиликата с соотношением Si/Al, равным 0,25. Навеску приготовленного носителя массой 50 г пропитывают водным раствором, содержащим 3,43 г парамолибдата аммония и 2,37 г нитрата кобальта(II), при этом объем раствора соответствует влагоемкости навески носителя. Полученный катализатор имеет следующий состав, мас. %: MoO3 - 5,5%; CoO - 1,0%; аморфный алюмосиликат - 66,0%; Al2O3 - остальное.

Пример 5

Катализатор готовят по методике, аналогичной примеру 2, но при этом в смеситель загружают 58,8 г порошка гидрооксида алюминия AlOOH и 50 г аморфного алюмосиликата с соотношением Si/Al, равным 0,25. Навеску приготовленного носителя массой 50 г пропитывают водным раствором, содержащим 3,43 г парамолибдата аммония и 2,37 г нитрата кобальта(II), при этом объем раствора соответствует влагоемкости навески носителя.

Полученный катализатор имеет следующий состав (мас. %): MoO3 - 5,7%; CoO - 1,0%; аморфный алюмосиликат - 46,6%; Al2O3 - остальное.

Пример 6

Катализатор готовят по методике, аналогичной примеру 2, но при этом в смеситель загружают 35,3 г порошка гидрооксида алюминия AlOOH и 70 г аморфного алюмосиликата с соотношением Si/Al, равным 0,1. Навеску приготовленного носителя массой 50 г пропитывают водным раствором, содержащим 3,43 г парамолибдата аммония и 2,37 г нитрата кобальта(II), при этом объем раствора соответствует влагоемкости навески носителя.

Полученный катализатор имеет следующий состав, мас. %: MoO3 - 5,7%; CoO - 1,0%; аморфный алюмосиликат - 66,1%; Al2O3 - остальное.

Пример 7

Катализатор готовят по методике, аналогичной примеру 2, но при этом в смеситель загружают 35,3 г порошка гидрооксида алюминия AlOOH и 70 г аморфного алюмосиликата с соотношением Si/Al, равным 0,25. Навеску приготовленного носителя массой 50 г пропитывают водным раствором, содержащим 2,04 г парамолибдата аммония и 1,67 г нитрата кобальта(II), при этом объем раствора соответствует влагоемкости навески носителя.

Полученный катализатор имеет следующий состав, мас. %: MoO3 - 3,0%; CoO - 0,8%; аморфный алюмосиликат - 67,3%; Al2O3 - остальное.

Пример 8

Катализатор готовят по методике, аналогичной примеру 2, но при этом в смеситель загружают 35,3 г порошка гидрооксида алюминия AlOOH и 70 г аморфного алюмосиликата с соотношением Si/Al, равным 0,25. Навеску приготовленного носителя массой 50 г пропитывают водным раствором, содержащим 8,64 г парамолибдата аммония и 10,43 г нитрата кобальта(II), при этом объем раствора соответствует влагоемкости навески носителя.

Полученный катализатор имеет следующий состав, мас. %: MoO3 - 12,0%; CoO - 4,6%; аморфный алюмосиликат - 58,4%; Al2O3 - остальное.

Приготовленные по примерам 2-8 катализаторы имеют удельную поверхность 150-350 м2/г, объем пор 0,3-0,9 см3/г, средний диаметр пор 5-15 нм и представляют собой частицы в форме трилистника с диаметром 1,3-1,7 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell 1471, не менее 1,0 МПа.

Процесс гидроочистки БКК проводят в проточном реакторе в следующих условиях: температура - 280°C, объемная скорость подачи сырья - 4 ч-1, соотношение h3/сырье - 150 нл/нл, давление - 2,5 МПа. В качестве сырья используют широкую фракцию БКК с интервалом кипения н.к. - 220°C, содержанием серы 127 ppm и октановым числом по исследовательскому методу 92,3. Перед каталитическими испытаниями катализаторы сульфидируют при температуре 400°C и атмосферном давлении в потоке сероводорода, идущего с расходом 1 л/час, в течение 2 ч.

Результаты тестирования катализаторов приведены в таблице.

Как видно из приведенных примеров и таблицы, проведение процесса гидроочистки бензина БКК в присутствии катализатора, имеющего оптимальный химический состав и оптимальные текстурные характеристики, обеспечивает получение продукта гидроочистки бензина БКК с низким содержанием серы при минимальной степени гидрирования олефиновых углеводородов и минимальном снижении октанового числа.

edrid.ru

Катализатор, способ его приготовления и процесс селективной гидроочистки бензина каталитического крекинга

Изобретение относится к области химии, в частности к катализаторам для селективной гидроочистки бензинов каталитического крекинга, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Заявляется катализатор селективной гидроочистки бензина каталитического крекинга, включающий в свой состав кобальт, молибден, фосфор или бор, калий и оксид алюминия, причем он содержит, % мас.: Мо - 4,0-11,0, Со - 1,2-3,5, Р или В - 0,1-1,5, K - 0,5-4,5, S - 2,5-8,5, С - 0,3-5,0, Al2O3 - остальное, катализатор имеет удельную поверхность 90-140 м2/г, объем пор 0,2-0,8 см3/г, средний диаметр пор 4,2-10,0 нм. Также изобретение включает способ приготовления катализатора и процесс селективной гидроочистки бензина каталитического крекинга. Технический результат заключается в создании нового катализатора, позволяющего обеспечить высокую глубину гидрообессеривания, низкую степень гидрирования олефинов и сохранение октанового числа при получении ультрачистого гидрогенизата. 3 н. и 7 з.п. ф-лы, 2 табл., 10 пр.

 

Изобретение относится к области химии, в частности к катализаторам для селективной гидроочистки бензинов каталитического крекинга, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности.

Производство экологически чистых бензинов в России сталкивается с определенными трудностями. С одной стороны, постоянно ужесточаются экологические и эксплуатационные требования к моторным топливам, с другой - ухудшается качество поступающих на переработку нефтей. Это вызывает необходимость перераспределения бензинового фонда: сокращение доли фракций каталитического риформинга как основного источника ароматических углеводородов и бензола и увеличение доли бензинов каталитического крекинга, изомеризата и алкилата. Ввиду малотоннажности процессов каталитической изомеризации и алкилирования, основная нагрузка по формированию бензинового фонда ложится на бензины каталитического крекинга. Однако даже на современных установках каталитического крекинга, включающих блок предварительной гидроочистки сырья, не удается получить компонент автобензина классов 4 и 5, поскольку высокооктановые бензины каталитического крекинга являются источниками 90% серы при компаундировании товарных топлив.

Для снижения содержания серы в бензинах каталитического крекинга используют два способа - предварительная гидроочистка сырья установки каталитического крекинга и гидроочистка бензина каталитического крекинга. Проблему сложно решить путем предварительной гидроочистки сырья каталитического крекинга, поскольку необходима сверхглубокая очистка вакуумного газойля (до содержания общей серы менее 200 ppm) от трудноудаляемых стерически экранированных сероорганических соединений. Гидроочистка бензина каталитического крекинга (второй способ) на стандартных Al-Ni(Co)-Mo(W) катализаторах протекает не селективно, наряду с реакциями гидродесульфуризации происходит глубокое гидрирование олефиновых углеводородов, что уменьшает октановое число очищенного бензинового компонента. Разработка современных катализаторов селективного гидрогенолиза серосодержащих соединений олефинсодержащего углеводородного сырья является наиболее эффективным решением данной проблемы.

Для создания катализаторов селективной гидроочистки бензинов каталитического крекинга используют методы формирования активного компонента на поверхности оптимального по текстуре и свойствам носителя за счет следующих подходов:

1. Использование в составе носителей и/или катализаторов щелочных и щелочноземельных металлов, подавляющих гидрирующую функцию катализаторов (US 5348928, B01J 21/04, B01J 23/78, В01 23/88, B01J 37/04, 20.09.1994; US 5340466, C10G 45/60, C10G 45/08, 23.08.1994; US 5846406, C10G 45/04, 08.12.1998; US 5358633, C10G 45/08, 25.10.1994, US 5770046, C10G 45/04, 23.06.1998, US 5525211, C10G 45/08, B01J 23/24, 11.06.1996; US 5851382, C10G 45/04, 22.12.1998). Недостатком таких катализаторов является низкая концентрация доступных активных центров гидрообессеривания, что не позволяет глубоко протекать реакциям гидрообессеривания для получения компонента товарного бензина с ультранизким содержанием серы.

2. Применение органических модификаторов, повышающих степень сульфидирования нанесенного активного предшественника, и селективность в реакциях гидрообессеривания по отношению к реакциям гидрирования олефинов (US 8236723, B01J 31/34, B01J 21/08, C10G 45/08, 07.08.2012; WO 2007/084438 А2, B01J 23/882, C10G 45/08, 26.07.2007; WO 2007/084439 А1, C10G 45/08, B01J 23/882, B01J 21/08, B01J 35/10, 26.07.2007). Недостатком синтеза таких катализаторов является наличие гидрирующих центров на поверхности активной фазы, что не позволяет провести селективную гидроочистку бензинов каталитического крекинга, особенно при получении гидрогенизата с содержанием серы менее 50 ppm (0.0050% мас.).

Общим недостатком для вышеперечисленных катализаторов является низкая селективность по отношению к нежелательным реакциям гидрирования олефинов при необходимой высокой глубине гидрообессеривания, и как результат - снижение октанового числа до 5 п. по сравнению с исходным бензином. Техническим решением настоящего изобретения является создание катализатора, имеющего триметаллическую сульфидную активную фазу типа «K-Co-Mo-S» с высокой долей активных центров гидрообессеривания и низким содержанием центров гидрирования за счет совместного использования гетерополианинов, соединений кобальта, калия и носителя Al2O3 с умеренно развитой поверхностью, обеспечивающих в процессе сульфидирования образование мультислойных частиц MoS2, органических стабилизаторов-комплексообразователей, обеспечивающих фиксацию атомов промотора Со на ребрах наночастиц MoS2 и ограничивающих размер частиц аморфным углеродом, а также подавление центров гидрирования благодаря использованию щелочного металла калия.

Способ приготовления катализатора пропиткой оксида алюминия совместным раствором всех элементов позволяет обеспечить молекулярный контакт предшественников, необходимый для формирования наноразмерных мультислойных частиц активной фазы «K-Co-Mo-S» оптимального состава и морфологии для проведения процесса селективной гидроочистки бензина каталитического крекинга.

Наиболее близким к предлагаемому решению является катализатор селективной гидроочистки и способ его приготовления, описанные в патенте US 5348928, B01J 21/04, B01J 23/78, В01 23/88, B01J 37/04, 20.09.1994. Катализатор включает гидрирующий компонент - металлы из группы VIB и VIII Периодической таблицы с содержанием 4-20% мас. и 0.5-10% мас. в пересчете на оксиды соответственно. Носитель катализатора включает магний в количестве 0.5-50% мас. в пересчете на оксид, щелочной металл в количестве 0.02-10% мас.

Способ приготовления селективного катализатора гидроочистки бензина каталитического крекинга включает следующие операции: приготовление первого водного раствора, содержащего растворенные соединения металлов VIB и VIII групп; смешение первого раствора с неорганическим оксидом и образованием пасты, включающей металлы VIB и VIII групп; превращение пасты в композит по меньшей мере одной из форм, перечисленных из ряда: шарик, порошок, таблетки, экструдаты; приготовление второго водного раствора, включающего растворенные соединения магния и щелочного металла; смешение второго водного раствора с композитом и получением пропитанного композита; прокаливание полученного композита с получением катализатора селективной гидроочистки.

Недостатком данного способа приготовления катализатора является то, что используются предшественники металлов из группы VIB и VIII Периодической таблицы, не позволяющие сформировать высокодисперсную активную фазу с высоким содержанием активных центров, а также многостадийность процесса приготовления. В результате, во-первых, не достигается степень гидрообессеривания бензина каталитического крекинга выше 95.5%, во-вторых, при степени гидрообессеривания 80% и выше происходит гидрирование олефиновых углеводородов до 65%, т.е. снижается селективность процесса и, как следствие, октановое число получаемого бензина. Таким образом, каталитические свойства катализатора-прототипа не позволяют получать бензины с ультранизким содержанием серы, сохранением содержания олефиновых углеводородов и значений октанового числа.

Техническим результатом настоящего изобретения является создание нового катализатора, способа приготовления и процесса селективной гидроочистки бензина каталитического крекинга, позволяющие обеспечить высокую глубину гидрообессеривания и низкую степень гидрирования олефинов и, как результат, сохранение октанового числа при получении ультрачистого гидрогенизата. Технический результат достигается за счет катализатора селективной гидроочистки бензина каталитического крекинга, включающего в свой состав кобальт, молибден, фосфор или бор, калий и оксид алюминия, отличающийся тем, что он содержит, % масс.: Мо - 4,0-11,0; Со - 1,2-3,5; Р или В - 0,1-1,5; K - 0,5-4,5; S - 2,5-8,5; С - 0,3-5,0; Al2O3 - остальное; катализатор имеет удельную поверхность 90-140 м2/г, объем пор 0,2-0,8 см3/г, средний диаметр пор 4,2-10,0 нм. Катализатор имеет форму цилиндров или трехлистников. Оксид алюминия по фазовому составу представляет собой γ-Al2O3, δ-Al2O3 или их композиции и имеет удельную поверхность 100-160 м2/г, объем пор 0,4-1,0 см3/г, средний диаметр пор 4,5-10,5 нм.

Способ приготовления катализатора селективной гидроочистки бензина каталитического крекинга пропиткой оксида алюминия раствором предшественников активного компонента с последующей сушкой и сульфидированием, отличающийся тем, что носитель однократно пропитывают водным раствором, имеющим рН 2,0-4,5, содержащим как минимум один из гетерополианионов ряда [Co2Mo10O38h5]6-, [Co(OH)6Mo6O18]4-, [Co(OH)6Mo6O18]3-, Нх[P2Mo5O23](6-х)- (х=0-2), Нх[PMo11CoO40](7-х)- (х=0-2), [ВМо12О40]5-, [PMo12O40]3-, в качестве соединения кобальта используется одно из ряда гидроксид кобальта Со(ОН)2⋅nh3O (n=0,5-5), кобальт углекислый CoCO3⋅nh3O (n=0-5), кобальт углекислый основной 2CoCO3⋅3Со(ОН)2⋅nh3O (n=0,5-5), в качестве соединения калия используется любое из ряда гидроксид калия KOH, карбонат калия K2CO3, фосфат калия K3PO4, гидрофосфат калия K2HPO4, дигидрофосфат калия Kh3PO4, борат калия K3BO3, в качестве стабилизатора пропиточного раствора используют карбоновую кислоту, содержащую по меньшей мере одну карбоксильную группу, одну гидроксильную группу и 2-20 углеродных атомов.

Для приготовления катализатора в качестве стабилизатора используется лимонная кислота, используют либо пропитку носителя по влагоемкости, либо из избытка раствора, пропитка гранул носителя проводится после создания вакуума в сосуде, содержащем носитель, пропиточным раствором при температурах 20-50°С. После пропитки катализатор сушат при температуре 120-260°С в потоке воздуха или азота.

Процесс селективной гидроочистки бензина каталитического крекинга, который включает пропускание бензина каталитического крекинга через слой заявляемого катализатора. Процесс проводят при температуре 240-320°С, давлении 0,5-3,0 МПа, объемном расходе сырья 2-8 ч-1, объемном отношении водород/сырье 100-500 м3/м3.

Исходные соединения для приготовления совместного пропиточного раствора, состав и текстурные характеристики используемых носителей приведены в табл. 1.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1

Состав катализатора и способ его приготовления согласно известному техническому решению-прототипу.

Катализатор готовят пропиткой 100 г γ-Al2O3 раствором 3.9 г нитрата кобальта Со(NO3)2⋅6h3O, 7.4 г молибдата аммония в 58.7 воды. Полученные образцы сушили при комнатной температуре, далее при 121°С в течение 12 ч и прокаливали при 538°С в течение 2 ч. Затем полученный образец (100 г) пропитывали 6.37 г Mg(NO3)2⋅6h3O в 58.7 г воды. Снова проводили сушку при комнатной температуре, далее при 121°С в течение 12 ч и прокаливали при 538°С в течение 2 ч.

Катализатор содержит, мас. %: Мо - 4,0; Со - 0,9; Mg - 0,5; Na - 0,06; S - 2,8; Al2O3 - остальное.

Примеры 2-10 иллюстрируют предлагаемое техническое решение.

Пример 2

Для приготовления пропиточного раствора 8,0 г декамолибдодикобальтовой гетерополикислоты H6[Со2Мо10О38Н4], 1,5 г карбоната кобальта CoCO3⋅h3O, 4,1 г бората калия K3BO3 и 3,0 г моногидрата лимонной кислоты C6H8O7⋅h3O последовательно растворяют в 60 см3 воды при 40-60°С и перемешивании. После окончания выделения CO2 доводят объем пропиточного раствора водой до 78 см3. рН пропиточного раствора равен 3,0-4,0.

Носитель - оксид алюминия, состоящий на 20% мас. из γ-Al2O3 и 80% мас. δ-Al2O3 - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 120°С в течение 8 ч и сульфидируют путем нагрева до 400°С в течение 2 ч в токе смеси сероводорода и водорода (5 об. % h3S) при объемном расходе смеси 500 ч-1.

Катализатор содержит, мас. %: Мо - 4,0; Со - 1,2; В - 0,2; K - 2,4; S - 2,9; С - 0,3; Al2O3 - остальное; имеет удельную поверхность 130 м2/г, объем пор 0,56 см3/г и средний диаметр пор 4,4 нм (табл. 1).

Пример 3

Для приготовления пропиточного раствора 12,9 г гексамолибдокобальтовой гетерополикислоты Н4[Со(ОН)6Mo6O18], 2,7 г карбоната кобальта CoCO3⋅h3O, 6,6 г бората калия K3BO3 и 1,0 г гликолевой кислоты C2h5O3 последовательно растворяют в 50 см3 воды при 30-50°С и перемешивании. После окончания выделения CO2 доводят объем пропиточного раствора водой до 65 см3. рН пропиточного раствора равен 3,0-4,0.

Носитель - оксид алюминия, состоящий на 20% мас. из γ-Al2O3 и 80% мас. δ-Al2O3 - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 45°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 140°С в течение 8 ч и сульфидируют путем нагрева до 400°С в течение 2 ч в токе смеси сероводорода и водорода (5 об. % h3S) при объемном расходе смеси 500 ч-1.

Катализатор содержит, мас. %: Мо - 6,0; Со - 1,8; В - 0,3; K - 3,7; S - 4,4; С - 0,1; Al2O3 - остальное; имеет удельную поверхность 110 м2/г, объем пор 0,43 см3/г и средний диаметр пор 5,1 нм (табл. 1).

Пример 4

Для приготовления пропиточного раствора 12,9 г декамолибдодикобальтовой гетерополикислоты Н6[Co2Mo10O38h5], 2,4 г гидроксида кобальта Со(ОН)2⋅h3O, 8,1 г фосфата калия K3PO4 и 3,4 г винной кислоты C4H6O6 последовательно растворяют в 50 см3 воды при 40-60°С и перемешивании. После окончания выделения CO2 доводят объем пропиточного раствора водой до 65 см3. рН пропиточного раствора равен 3,0-4,0.

Носитель - оксид алюминия, состоящий на 20% мас. из γ-Al2O3 и 80% мас. δ-Al2O3 - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 160°С в течение 5 ч и сульфидируют путем нагрева до 400°С в течение 2 ч в токе смеси сероводорода и водорода (5 об. % h3S) при объемном расходе смеси 500 ч-1.

Катализатор содержит, мас. %: Мо - 6,0; Со - 1,8; Р - 1,0; K - 3,7; S - 4,6; С - 0,4; Al2O3 - остальное; имеет удельную поверхность 110 м2/г, объем пор 0,46 см3/г и средний диаметр пор 5,2 нм (табл. 1).

Пример 5

Для приготовления пропиточного раствора 17,9 г кобальтовой соли пентамолибдодифосфорной кислоты Со3[P2Mo5O23] растворяют в 55 см3 воды, добавляют 5,7 г карбоната калия K2CO3 и 4,5 г молочной кислоты C3H6O3. После окончания выделения CO2 доводят объем пропиточного раствора водой до 65 см3. рН пропиточного раствора равен 3,5-4,5.

Носитель - оксид алюминия, состоящий на 20% мас. из γ-Al2O3 и 80% мас. δ-Al2O3 - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 35°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 160°С в течение 5 ч и сульфидируют путем нагрева до 400°С в течение 2 ч в токе смеси сероводорода и водорода (5 об. % h3S) при объемном расходе смеси 500 ч-1.

Катализатор содержит, мас. %: Мо - 6,5; Со - 2,4; Р - 0,8; K - 2,6; S - 4,8; С - 0,5; Al2O3 - остальное; имеет удельную поверхность 110 м2/г, объем пор 0,46 см3/г и средний диаметр пор 5,2 нм (табл. 1).

Пример 6

В раствор 14,4 г H7[РМо11СоО40] в 55 см3 воды добавляют 3,8 г карбоната кобальта CoCO3⋅h3O, 4,9 г гидроксида калия KOH и 7,5 г лимонной кислоты C6H8O7. После окончания выделения CO2 доводят объем пропиточного раствора водой до 65 см3. рН пропиточного раствора равен 3,5-4,5.

Носитель - оксид алюминия, состоящий на 30% мас. из γ-Al2O3 и 70% мас. δ-Al2O3 - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 30°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 180°С в течение 4 ч и сульфидируют путем нагрева до 400°С в течение 2 ч в токе смеси сероводорода и водорода (5 об. % h3S) при объемном расходе смеси 500 ч-1.

Катализатор содержит, мас. %: Мо - 7,0; Со - 2,2; Р - 0,2; K - 2,8; S - 5,1; С - 0,8; Al2O3 - остальное; имеет удельную поверхность 104 м2/г, объем пор 0,44 см 3/г и средний диаметр пор 5,9 нм (табл. 1).

Пример 7

Для приготовления пропиточного раствора 28,1 г додекамолибдофосфорной кислоты h4[PMo12O40], 10,8 г карбоната калия K2CO3, 8,4 г гидрокарбоната кобальта 2CoCO3⋅3Со(ОН)2⋅h3O и 16,4 г моногидрата лимонной кислоты C6H8O7⋅h3O последовательно растворяют в 60 см3 воды при 40-60°С и перемешивании. После окончания выделения CO2 доводят объем пропиточного раствора водой до 102 см3. рН пропиточного раствора равен 2,5-3,5.

Носитель - оксид алюминия, состоящий на 50% мас. из γ-Al2O3 и 50% мас. δ-Al2O3 - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 35°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 180°С в течение 4 ч и сульфидируют путем нагрева до 400°С в течение 2 ч в токе смеси сероводорода и водорода (5 об. % h3S) при объемном расходе смеси 500 ч-1.

Катализатор содержит, мас. %: Мо - 11,1; Со - 3,4; Р - 0,3; K - 4,5; S - 8,2; С - 1,3; Al2O3 - остальное; имеет удельную поверхность 142 м2/г, объем пор 0,54 см3/г и средний диаметр пор 9,6 нм (табл. 1).

Пример 8

Для приготовления пропиточного раствора 28,1 г додекамолибдофосфорной кислоты Н3[PMo12O40], 10,8 г карбоната калия K2CO3, 8,4 г гидрокарбоната кобальта 2CoCO3⋅3Со(ОН)2⋅h3O и 10,5 г яблочной кислоты С4Н6О5 последовательно растворяют в 60 см3 воды при 40-60°С и перемешивании. После окончания выделения CO2 доводят объем пропиточного раствора водой до 72 см3. рН пропиточного раствора равен 2,5-3,5.

Носитель γ-Al2O3 массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 35°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 150°С в течение 6 ч и сульфидируют путем нагрева до 400°С в течение 2 ч в токе смеси сероводорода и водорода (5 об. % h3S) при объемном расходе смеси 500 ч-1.

Катализатор содержит, мас. %: Мо - 11,0; Со - 3,4; Р - 0,3; K - 4,5; S - 8,2; С - 1,3; Al2O3 - остальное; имеет удельную поверхность 138 м2/г, объем пор 0,52 см3/г и средний диаметр пор 9,7 нм (табл. 1).

Пример 9

Для приготовления пропиточного раствора 14,5 г додекамолибдоборной гетерополикислоты H5[BMo12O40], 6,3 г карбоната калия K2CO3, 4,9 г карбоната кобальта CoCO3⋅h3O, и 9,5 г моногидрата лимонной кислоты C6H8O7⋅h3O последовательно растворяют в 55 см3 воды при 40-60°С и перемешивании. После окончания выделения CO2 доводят объем пропиточного раствора водой до 68 см3. рН пропиточного раствора равен 3,0-4,0.

Носитель δ-Al2O3 массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 120°С в течение 8 ч и сульфидируют путем нагрева до 400°С в течение 2 ч в токе смеси сероводорода и водорода (5 об. % h3S) при объемном расходе смеси 500 ч-1.

Катализатор содержит, мас. %: Мо - 7,2; Со - 2,2; В - 0,1; K - 2,9; S - 5,2; С - 1,2; Al2O3 - остальное; имеет удельную поверхность 92 м2/г, объем пор 0,42 см3/г и средний диаметр пор 6,0 нм (табл. 1).

Пример 10

Для приготовления пропиточного раствора 14,0 г додекамолибдоборной гетерополикислоты H5[BMo12O40], 6,3 г карбоната калия K2CO3, 4,9 г карбоната кобальта CoCO3⋅h3O, и 9,5 г моногидрата лимонной кислоты C6H8O7⋅h3O последовательно растворяют в 55 см3 воды при 40-60°С и перемешивании. После окончания выделения CO2 доводят объем пропиточного раствора водой до 68 см3. рН пропиточного раствора равен 3,0-4,0.

Носитель δ-Al2O3 массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 200°С в течение 3 ч и сульфидируют путем нагрева до 400°С в течение 2 ч в токе смеси сероводорода и водорода (5 об. % h3S) при объемном расходе смеси 500 ч-1.

Катализатор содержит, мас. %: Мо - 7,0; Со - 2,2; В - 0,1; K - 2,9; S - 5,4; С - 1,0; Al2O3 - остальное; имеет удельную поверхность 106 м2/г, объем пор 0,46 см3/г и средний диаметр пор 6,1 нм (табл. 1).

Катализаторы испытывали в процессе гидроочистки бензина каталитического крекинга, выкипающего в пределах 110-220°С, с содержанием серы 0.0110% мас. и олефинов 12.0% масс. и октановым числом 92.0 п. (по исследовательскому методу). В трубчатый реактор загружали 15 см3 катализатора в виде частиц размером 0,25-0,50 мм, приготовленных путем измельчения и рассеивания исходных гранул катализатора, разбавленного SiC до общего объема 30 см3. Условия испытания: давление водорода 1,0-3,0 МПа, кратность циркуляции водорода 100-500 нл/л сырья, объемная скорость подачи сырья 2,0-8,0 ч-1, температура в реакторе 240-320°С.

Гидрогенизаты отделяли от водорода в сепараторах высокого и низкого давления, затем подвергали обработке 10%-ным раствором NaOH в течение 15 мин, отмывали дистиллированной водой до нейтральной реакции промывных вод, высушивали над прокаленным CaCl2. Содержание серы в сырье и полученных гидрогенизатах определяли согласно ГОСТ Р 52660, содержание олефиновых углеводородов - по ГОСТ 2070, фракционный состав - по ГОСТ 2177-99, октановое число - исследовательским методом по ГОСТ 8226.

Селективность катализаторов в отношении реакций гидрообессеривания оценивался по селективному фактору, рассчитанному по формуле:

где и - конверсия серосодержащих соединений и олефинов, соответственно %.

Результаты испытаний катализаторов представлены в табл. 2.

Заявляемые катализаторы превосходят по активности и селективности прототип. Показатели процесса при гидроочистке бензина каталитического крекинга позволяют сделать вывод о высокой эффективности заявляемых катализаторов и способов их приготовления. Процесс гидроочистки бензина каталитического крекинга в присутствии заявляемых катализаторов обеспечивает получение бензина с ультранизким содержанием серы и сохранением значения его октанового числа на исходном уровне.

1. Катализатор селективной гидроочистки бензина каталитического крекинга, включающий в свой состав кобальт, молибден, фосфор или бор, калий и оксид алюминия, отличающийся тем, что он содержит, мас.%: Мо - 4,0-11,0; Со - 1,2-3,5; P или B - 0,1-1,5; K - 0,5-4,5; S - 2,5-8,5; C - 0,3-5,0; Al2O3 остальное; катализатор имеет удельную поверхность 90-140 м2/г, объем пор 0,2-0,8 см3/г, средний диаметр пор 4,2-10,0 нм.

2. Катализатор по п. 1, отличающийся тем, что имеет форму цилиндров или трехлистников.

3. Катализатор по п. 1, отличающийся тем, что оксид алюминия по фазовому составу представляет собой γ-Al2O3, δ-Al2O3 или их композиции и имеет удельную поверхность 100-160 м2/г, объем пор 0,4-1,0 см3/г, средний диаметр пор 4,5-10,5 нм.

4. Способ приготовления катализатора селективной гидроочистки бензина каталитического крекинга по п. 1 пропиткой оксида алюминия раствором предшественников активного компонента с последующей сушкой и сульфидированием, отличающийся тем, что носитель однократно пропитывают водным раствором, имеющим pH 2,0-4,5, содержащим как минимум один из гетерополианионов ряда [Co2Mo10O38h5]6-, [Со(ОН)6Mo6O18]4-, [Со(ОН)6Mo6O18]3-, Hx[P2Mo5O23](6-х)- (х=0-2), Нх[РМо11СоО40](7-x)- (х=0-2), [BMo12O40]5-, [PMo12O40]3-, в качестве соединения кобальта используется одно из ряда гидроксид кобальта Со(ОН)2·nh3O (n=0,5-5), кобальт углекислый CoCO3·nh3O (n=0-5), кобальт углекислый основной 2CoCO3⋅3Со(ОН)2·nh3O (n=0,5-5), в качестве соединения калия используется любое из ряда гидроксид калия КОН, карбонат калия K2CO3, фосфат калия K3PO4, гидрофосфат калия K2HPO4, дигидрофосфат калия Kh3PO4, борат калия K3BO3, в качестве стабилизатора пропиточного раствора используют карбоновую кислоту, содержащую по меньшей мере одну карбоксильную группу, одну гидроксильную группу и 2-20 углеродных атомов.

5. Способ приготовления катализатора по п. 4, отличающийся тем, что в качестве стабилизатора используют лимонную кислоту.

6. Способ приготовления катализатора по п. 4, отличающийся тем, что используют либо пропитку носителя по влагоемкости, либо из избытка раствора.

7. Способ приготовления катализатора по п. 4, отличающийся тем, что пропитку гранул носителя после создания вакуума проводят пропиточным раствором при температурах 20-50°С.

8. Способ приготовления катализатора по п. 4, отличающийся тем, что после пропитки катализатор сушат при температуре 120-260°С в потоке воздуха или азота.

9. Процесс селективной гидроочистки бензина каталитического крекинга, который включает пропускание бензина каталитического крекинга через слой катализатора, причем используют катализатор по любому из пп. 1-3 или катализатор, приготовленный по любому из способов пп. 4-8.

10. Процесс по п. 9, отличающийся тем, что его проводят при температуре 240-320°С, давлении 0,5-3,0 МПа, объемном расходе сырья 2-8 ч-1, объемном отношении водород/сырье 100-500 м3/м3.

www.findpatent.ru

Гидроочистка — WiKi

Гидроочистка бензиновых фракций

Различают гидроочистку прямогонных бензиновых фракций и фракций бензина каталитического крекинга.

Гидроочистка бензина прямогонных бензиновых фракций. Направлен на получения гидроочищенных бензиновых фракций — сырья для риформинга. Процесс гидроочистки бензиновых фракций основан на реакциях гидрогенолиза и частичной деструкции молекул в среде водородсодержащего газа, в результате чего органические соединения серы, азота, кислорода, хлора, металлов, содержащиеся в сырье, превращаются в сероводород, аммиак, воду, хлороводород и соответствующие углеводороды Качество топлива до и после гидроочистки:

показатели сырье продукт
Плотность кг/м3, 745 745
Содержание серы %масс, 0,08 0
Бромное число г Br2/100 г. 0,48 0,02

Параметры процесса: Давление 1-3 МПа; Температура 370—380 °C; Содержание водорода в ВСГ — 75 %; Кратность циркуляции водорода 80-200 м³/м³; Катализатор — кобальт-молибденовый.

Типичный материальный баланс процесса:

Продукция Выход % на сырье
Взято всего: 100,15
Фр. 85-180 °C 100
ВСГ 0,15
Получено всего: 100,15
Углеводородные газы 0,65
Сероводород 0
Гидроочищенная фракция 99
Потери 0,5

Гидроочистка бензина каталитического крекинга. Процесс направлен на снижение серы и диеновых углеводородов в товарных бензинах.

показатели сырье продукт
Плотность кг/м3, 759 751
Содержание серы %масс, 0,28 0,1
Йодное число г I2/100 г. 52 41
Октановое число м.м. 81 80,5

Гидроочистка керосиновых фракций

Гидроочистка керосиновых фракций направлена на снижение содержания серы и смол в реактивном топливе. Сернистые соединения и смолы вызывают коррозию топливной аппаратуры летательных аппаратов и закоксовывают форсунки двигателей.

Качество топлива до и после гидроочистки:

показатели сырье продукт
Плотность кг/м3, 785 778
Содержание серы %масс, 0,46 0,15
Йодное число г I2/100 г. 2,2 0,5
Температура вспышки, °С 30 30
Температура застывания, °С −62 −64

Параметры процесса: Давление 1,5-2,2 МПа; Температура 300—400 °C; Содержание водорода в ВСГ — 75 %; Кратность циркуляции водорода 180—250 м³/м³; Катализатор — кобальт-молибденовый.

Типичный материальный баланс процесса:

Продукция Выход % на сырье
Взято всего: 100,25
Фр. 140—240 °C 100
ВСГ 0,25
Получено всего: 100,25
Углеводордные газы 0,65
Сероводород 0,2
Бензиновый отгон 1,10
Гидроочищенная фракция 97,9
Потери 0,4

Гидроочистка дизельного топлива

Гидроочистка дизельного топлива направлена на снижение содержания серы и полиароматических углеводородов. Сернистые соединения сгорая образуют сернистый газ, который с водой образует сернистую кислоту — основной источник кислотных дождей. Полиароматика снижает цетановое число.

Качество топлива до и после гидроочистки:

показатели сырье продукт
Плотность кг/м3, 850 845
Содержание серы %масс, 1,32 0,2
Йодное число г I2/100 г. 4,0 1,2
Температура застывания, °С −3 −1
Цетановое число 52 53

Параметры процесса: Давление 1,8-2 МПа; Температура 350—420 °C; Содержание водорода в ВСГ — 75 %; Кратность циркуляции водорода 180—300 м³/м³; Катализатор — никель-молибденовый.

Типичный материальный баланс процесса:

Продукция Выход % на сырье
Взято всего: 100,40
Фр. 240—360 (180—360)°С 100
ВСГ 0,40
Получено всего: 100,40
Углеводордные газы 0,6
Сероводород 1,2
Бензиновый отгон 1,30
Гидроочищенная фракция 96,9
Потери 0,4

Гидроочистка вакуумного газойля

Гидроочистка вакуумного газойля направлена на снижение содержания серы и полиароматических углеводородов. Гидроочищенный газойль является сырьем для каталитического крекинга. Сернистые соединения отравляют катализатор крекинга, а также ухудшают качество целевого продукта бензина каталитического крекинга (см. Гидроочистка бензиновых фракций).

Качество топлива до и после гидроочистки:

показатели сырье продукт
Плотность кг/м3, 920 885
Содержание серы %масс, 1,6 0,2
Бромное число г Br2/100 г. 0,25 0,05
Температура застывания, °С 27 34

Параметры процесса: Давление 8-9 МПа; Температура 370—410 °C; Содержание водорода в ВСГ — 99 %; Кратность циркуляции водорода >500 м³/м³; Катализатор — никель-молибденовый.

Типичный материальный баланс процесса:

Продукция Выход % на сырье
Взято всего: 100,65
Фр. 350—500 °C 100
ВСГ 0,65
Получено всего: 100,65
Углеводордные газы 1,5
Сероводород 1,5
Бензиновый отгон 1,30
Гидроочищенная фракция 86,75
Дизельная фракция 9,20
Потери 0,4

Гидроочистка нефтяных масел

Гидроочистка нефтяных масел — необходима для осветления масел и придания им химической стойкости, антикоррозийности, экологичности. Гидроочистка улучшает также индекс вязкости моторных масел. Во многом гидроочистка нефтяных масел аналогична гидроочистке вакуумных газойлей.

Литература

  • Проскуряков В.А., Драбкин А.Е. Химия нефти и газа. — СПб.: Химия, 1995. — С. 370—380. — 448 с. — ISBN 5-7245-1023-5.
  • Аспель Н.Б., Демкина Г.Г. Гидроочистка моторных топлив. — Л.: Химия, 1977. — 160 с.
  • Старцев А.Н. Сульфидные катализаторы гидроочистки: синтез, структура, свойства. — Новосибирск: Гео, 2007. — 206 с. — ISBN 5-9747-0050-3.
  • Огородников С.К. Справочник нефтехимика. — Л.: Химия, 1978. — Т. 1. — С. 69—73. — 496 с.

ru-wiki.org

Способ гидроочистки бензина каталитического крекинга

Изобретение относится к области нефтепереработки, а именно к способам гидроочистки бензина каталитического крекинга с получением продукта компонента товарного бензина с низким содержанием серы при минимальном снижении октанового числа, и может быть использовано в нефтеперерабатывающей промышленности. Описан способ гидроочистки бензина каталитического крекинга, заключающийся в пропускании смеси бензина каталитического крекинга и водорода через реактор при температуре 240-320°C, давлении 1,5-3,0 МПа, объемном отношении водород/сырье 100-300 м3/м3, объемной скорости подачи сырья 2-10 ч-1 в присутствии гетерогенного катализатора, содержащего кобальт и молибден в форме оксидов, кремний в форме аморфного алюмосиликата, алюминий в форме оксида алюминия и аморфного алюмосиликата, при этом компоненты содержатся в следующих концентрациях, мас. %: MoO3 - 3,0-12,0; CoO - 0,8-4,6; аморфный алюмосиликат с массовым соотношением Si/Al от 0,1 до 0,9 - 46,6-84,0%; Al2O3 - остальное; имеющего удельную поверхность 150-350 м2/г, объем пор 0,3-0,9 см3/г, средний диаметр пор 5-15 нм, представляющего собой частицы в форме трилистника с диаметром 1,3-1,7 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell 1471, не менее 1,0 МПа. Технический результат - получение продукта гидроочистки бензина каталитического крекинга компонента товарного бензина с содержанием серы не более 10 ppm при снижении октанового числа бензина каталитического крекинга не более чем на 1,5 пункта по исследовательскому методу и 1,0 пункта по моторному методу. 4 з.п. ф-лы, 1 табл., 8 пр.

Изобретение относится к способам селективной гидроочистки бензина каталитического крекинга (БКК) с получением продукта - компонента товарного бензина - с низким содержанием серы при минимальном снижении октанового числа.

Получение моторных топлив с низким содержанием серы является одной из наиболее важных задач современной нефтепереработки. В настоящее время Россия переходит к производству дизельных топлив и бензинов, соответствующих экологическому классу 5 в соответствии с техническим регламентом Таможенного союза "О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и мазуту" (18.10.2011) и содержащих не более 10 ppm серы. БКК является одним из основных компонентов товарных бензинов. Доля БКК в бензиновом фонде НПЗ составляет 30-40%, при этом вместе с БКК в компаундированные бензины поступает до 95% количества серы [Sylvette Brunet, Damien Mey, Guy Perot, Christophe Bouchy, Fabrice Diehl. On the hydrodesulfurization of FCC gasoline: a review. Applied Catalysis A: General. - 2005. - 278. P. 143-172]. Для получения бензинов, соответствующих современным требованиям, необходимо снижение содержания серы в БКК, что, как правило, достигается с использованием процессов гидроочистки.

При проведении гидроочистки БКК наряду с гидрогенолизом серосодержащих соединений протекает также гидрирование олефиновых углеводородов, приводящее к снижению октанового числа БКК. Поэтому актуальной задачей является разработка процессов гидроочистки БКК, позволяющих снизить содержание серы в БКК при минимальном снижении октанового числа.

Известны различные варианты проведения процесса гидроочистки БКК. Одним из подходов является разделение БКК на легкую и тяжелую фракции с последующей гидроочисткой тяжелой фракции и смешением легкой фракции с продуктом гидроочистки тяжелой. Возможны также варианты, при которых легкая фракция подвергается дополнительной демеркаптанизации.

Так, известен способ гидроочистки БКК [Пат. РФ №2242501, C10G 45/08, 05.09.2003], заключающийся в разделения БКК на фракции н.к. - 130-160°C и 130-160°C - к.к. с последующей гидроочисткой тяжелой фракции в присутствии катализатора и смешением легкой фракции с гидроочищенной тяжелой фракцией. Процесс гидроочистки тяжелой фракции проводят при температуре 200-320°C, давлении 1,0-3,5 МПа, объемной скорости подачи сырья 1-10 ч-1 в присутствии катализатора, содержащего, мас. %: 8-19 MoO3 и 2-6 CoO и/или NiO, остальное - Al2O3, полученного пропиткой в два этапа предварительно прокаленного алюмооксидного носителя сначала раствором аммония молибденовокислого, а затем раствором азотнокислого кобальта и/или азотнокислого никеля с промежуточной термообработкой при температуре 100-200°C и конечной прокалкой при 400-650°C. Данный способ позволяет получать продукт-компонент товарного бензина с содержанием серы менее 0,05 мас. % при потере октанового числа менее 0,5 пункта. Недостатком такого способа гидроочистки БКК является высокое содержание серы в продукте.

В патенте РФ №2134287, C10G 55/06, 10.08.1999 предложен способ, в соответствии с которым тяжелую нестабильную бензиновую фракцию каталитического крекинга подвергают гидрообессериванию с последующим возвратом ее после гидрообессеривания в ректификационную колонну установки каталитического крекинга и стабилизации ее совместно с негидроочищенной легкой бензиновой фракцией. Изобретение решает задачу снижения содержания серы в бензинах, получаемых в процессе каталитического крекинга, без уменьшения их октановых чисел и снижения содержания в них олефиновых углеводородов. Недостатком такого способа гидроочистки БКК также является высокое содержание серы в продукте.

Известен способ селективной очистки бензиновых фракций каталитического крекинга [Пат. РФ №2372380, C10G 65/04, 29.07.2008] путем их ступенчатого гидрооблагораживания в присутствии алюмооксидных катализаторов в среде водорода при повышенных давлении и температуре с разделением продукта первой ступени на легкую и тяжелую фракции с последующим гидрооблагораживанием тяжелой фракции на второй ступени при температуре 280-340°C, давлении 2-3 МПа, объемной скорости подачи сырья 4-8 ч-1 и смешением полученного продукта после второй ступени гидрооблагораживания с легкой фракцией продукта первой ступени с получением очищенного продукта. Разделение продукта первой ступени или разделение исходного бензина на легкую и тяжелую фракции проводят по температуре 70-90°C при переработке сырья с содержанием серы выше 0,16 мас. %, 90-120°C - при переработке сырья с содержанием серы 0,005-0,16 мас. %. Заявленный способ позволяют уменьшить содержание серы до уровня не более 0,0010 мас. % в бензиновой фракции при минимальном снижении содержания олефиновых углеводородов.

Общим недостатком способов обессеривания БКК, основанных на разделении бензина на легкую и тяжелую фракцию, является существенное усложнение технологической схемы процесса обессеривания БКК, а также высокое содержание серы в продукте в том случае, если легкая фракция не подвергается процессу демеркаптанизации или гидрообессеривания.

Другим вариантом гидроочистки БКК является проведении процесса гидроочистки БКК в присутствии катализаторов, обладающих повышенной селективностью, выражающейся в пониженной степени гидрирования олефиновых углеводородов при заданной глубине обессеривания. Для повышения селективности катализаторов гидроочистки БКК в их состав могут входить модифицирующие добавки, такие как оксид магния и других элементов.

В Пат. US №4140626, C10G 23/02, 20.02.1979 описан процесс гидроочистки БКК с использованием катализатора, содержащего металл группы VIB Периодической таблицы и металл группы VIII Периодической таблицы, осажденные на носитель, содержащий не менее 70 мас. % оксида магния.

Наиболее близким к предлагаемому изобретению является решение, описанное в Пат. US №5348928, B01J 23/85; C10G 45/08, 20.09.1994, в котором гидроочистка БКК производится в присутствии катализатора, содержащего в качестве гидрирующего компонента от 4 до 20 мас. % металла группы VIB Периодической таблицы и от 0,5 до 10 мас. % металла группы VIII Периодической таблицы, а в качестве компонента носителя от 0,5 до 50 вес. % магния и от 0,02 до 10 мас. % щелочного металла.

Недостатком данного способа гидроочистки БКК, а также других способов, основанных на использовании катализаторов с повышенной селективностью, является высокое содержание серы в продукте гидроочистки.

Изобретение решает задачу создания улучшенного способа гидроочистки широкой бензиновой фракции каталитического крекинга, обеспечивающего получение продукта гидроочистки с содержанием серы менее 10 ppm при минимальной степени гидрирования олефиновых углеводородов и снижении октанового числа не более чем на 1,5 пункта по исследовательскому методу и 1,0 пункта по моторному методу.

Задача решается способом гидроочистки бензина каталитического крекинга в присутствии гетерогенного катализатора, содержащего кобальт и молибден в форме оксидов; кремний в форме аморфного алюмосиликата, алюминий в форме γ-Al2O3 и аморфного алюмосиликата, при этом компоненты содержатся в следующих концентрациях, мас. %: MoO3 - 3,0-12,0; CoO - 0,8-4,6; аморфный алюмосиликат -46,6-84,0%; Al2O3 - остальное.

Используемый катализатор имеет удельную поверхность 150-350 м2/г, объем пор 0,3-0,9 см3/г, средний диаметр пор 5-15 нм и сформован в частицы в форме трилистника с диаметром 1,3-1,7 мм и длиной до 20 мм.

Входящий в состав используемого катализатора аморфный алюмосиликат содержит кремний и алюминий в массовом соотношении Si/Al от 0,1 до 0,9.

Перед проведением процесса гидроочистки катализатор подвергают сульфидированию, при этом сульфидирование проводят при температуре 200-400°C, а в качестве сульфидирующего агента используют сероводород либо углеводородную фракцию с добавкой органического сульфида либо полисульфида.

Гидроочистку проводят при температуре 240-320°C, давлении 1,5-3,0 МПа, объемном отношении водород/сырье 100-300 м3/м3, объемной скорости подачи сырья 2-10 ч-1.

Основным отличительным признаком предлагаемого способа гидроочистки БКК по сравнению с прототипом является то, что процесс гидроочистки проводят при температуре 240-320°C, давлении 1,5-3,0 МПа, объемном отношении водород/сырье 100-300 м3/м3, объемной скорости подачи сырья 2-10 ч-1 в присутствии гетерогенного катализатора, содержащего, мас. %: NoO3 - 3,0-12,0; Co - 0,8-4,6; аморфный алюмосиликат с массовым соотношением Si/Al от 0,1 до 0,9 - 46,6-84,0%; Al2O3 - остальное.

Вторым отличительным признаком является использование при проведении гидроочистки БКК катализатора, в состав носителя которого входит 50-90 мас. % аморфного алюмосиликата

Третьим отличительным признаком является то, что входящий в состав катализатора аморфный алюмосиликат содержит кремний и алюминий в массовом отношении Si/Al от 0,1 до 0,9.

Технический эффект предлагаемого способа гидроочистки БКК складывается из следующих составляющих:

1. Проведение процесса гидроочистки в присутствии катализатора, имеющего оптимальный химический состав и оптимальные текстурные характеристики, обеспечивающие получение продукта гидроочистки бензина БКК с низким содержанием серы при минимальной степени гидрирования олефиновых углеводородов и минимальном снижении октанового числа.

2. Аморфный алюмосиликат в составе катализатора, содержащий кремний и алюминий в массовом отношении Si/Al от 0,1 до 0,9, позволяет увеличить селективность катализатора в гидроочистке бензина каталитического крекинга и снизить падение октанового числа бензина при проведении гидроочистки. Кислотные центры алюмосиликата способствуют протеканию реакций изомеризации двойной связи и скелетной изомеризации олефиновых углеводородов, что, с одной стороны, приводит к превращению терминальных олефинов в более устойчивые к гидрированию внутренние олефины, а с другой стороны, способствует образованию более разветвленных углеводородов, обладающих высоким октановым числом.

3. Условия проведения процесса гидроочистки БКК, обеспечивающие достижение низкого содержания серы в продукте гидроочистки при минимальной степени гидрирования олефиновых углеводородов и минимальном снижении октанового числа.

Описание предлагаемого технического решения

Способ гидроочистки бензина каталитического крекинга, заключающийся в пропускании смеси бензина каталитического крекинга и водородсодержащего газа через реактор при температуре 240-320°C, давлении 1,5-3,0 МПа, объемном отношении водород/сырье 100-300 м3/м3, объемной скорости подачи сырья 2-10 ч-1 в присутствии гетерогенного катализатора, содержащего кобальт и молибден в форме оксидов; кремний в форме аморфного алюмосиликата, алюминий в форме оксида алюминия и аморфного алюмосиликата, при этом компоненты содержатся в следующих концентрациях, мас. %: MoO3 - 3,0-12,0; CoO - 0,8-4,6; аморфный алюмосиликат с массовым соотношением Si/Al от 0,1 до 0,9 3,9-84,0%; Al2O3 - остальное; имеющего удельную поверхность 150-350 м2/г, объем пор 0,3-0,9 см3/г, средний диаметр пор 5-15 нм, сформованного в частицы в форме трилистника с диаметром 1,3-1,7 мм.

Для приготовления катализатора используется способ, заключающийся в пропитке гранул предварительно сформованного носителя, содержащего оксид алюминия и аморфный алюмосиликат, водным раствором, содержащим парамолибдат аммония и нитрат кобальта(II), с последующей сушкой и прокалкой гранул катализатора. При этом пропитка может осуществляться по влагоемкости либо из избытка пропиточного раствора. Перед проведением процесса гидроочистки катализатор подвергают сульфидированию, при этом сульфидирование проводят при температуре 200-400°C, а в качестве сульфидирующего агента используют сероводород либо углеводородную фракцию с добавкой органического сульфида либо полисульфида

Сущность изобретения иллюстрируется следующими примерами.

Пример 1. Согласно известному техническому решению

100 г оксида алюминия с влагоемкостью 1,2 см3/г помещают в круглодонную колбу. Затем в колбу с носителем приливают 120 мл водного раствора, содержащего 8,58 г парамолибдата аммония и 5,44 г нитрата кобальта(II). Пропитку проводят в течение 2 ч при постоянном вращении колбы с катализатором, затем сушат при 120°C в течение 12 ч и прокаливают при температуре 538°C в течение 3 ч. Далее 30 г гранул, полученных после прокалки, пропитывают водным раствором, содержащим 3,16 г 6-водного нитрата магния и 0,33 г нитрата натрия, с последующей сушкой при 120°C в течение 12 ч и прокалкой при температуре 427°C в течение 2 ч.

Полученный катализатор имеет следующий состав, мас. %: MoO3 - 6,3%; CoO - 1,4%; MgO - 1,2%; Na2O - 0,3%; Al2O3 - остальное.

Примеры 2-8 иллюстрируют предлагаемое техническое решение.

Пример 2

В лабораторный смеситель помещают 35,3 г порошка гидрооксида алюминия AlOOH, имеющего структуру бемита с размером кристаллов 45-60 Å, со средним размером агломератов 40-50 мкм, содержащего примеси в количестве, мас. %, не более: Na2O - 0,005; Fe2O3 - 0,01; SiO2 - 0,015, и 70 г аморфного алюмосиликата с соотношением Si/Al, равным 0,9. Далее в смеситель добавляют раствор, полученный смешением 100 мл дистиллированной воды и 8,0 мл концентрированной азотной кислоты, имеющей плотность 1,4 г/см3. Готовую массу продавливают через отверстие фильеры, обеспечивающее получение экструдатов готового носителя с сечением в форме трилистника с размером от вершины трилистника до середины основания от 1,3 до 1,7 мм. Затем проводят термообработку, включающую в себя сушку и прокалку. Сушку экструдатов проводят в сушильном шкафу при температуре 110°C. Затем экструдаты прокаливают в муфельной печи при температуре 550°C в течение 4 ч.

Навеску приготовленного носителя массой 50 г помещают в круглодонную колбу. Затем в колбу с носителем приливают 30 мл водного раствора, содержащего 3,43 г парамолибдата аммония и 2,37 г нитрата кобальта(II). Пропитку проводят в течение 1 ч при температуре водяной бани 70°C и постоянном вращении колбы с готовящимся катализатором. По окончании пропитки получены равномерно окрашенные гранулы, не содержащие светлого пятна в центре на изломе. После пропитки гранулы катализаторов сушат при 120°C в течение 4 ч, затем прокаливают при температуре 550°C в течение 3 ч в токе воздуха.

Полученный катализатор имеет следующий состав, мас. %: MoO3 - 5,5%; CoO - 1,1%; аморфный алюмосиликат - 66,5%; Al2O3 - остальное.

Пример 3

Катализатор готовят по методике, аналогичной примеру 2, но при этом в смеситель загружают 11,8 г порошка гидрооксида алюминия AlOOH и 90 г аморфного алюмосиликата с соотношением Si/Al, равным 0,25. Навеску приготовленного носителя массой 50 г пропитывают водным раствором, содержащим 3,43 г парамолибдата аммония и 2,37 г нитрата кобальта(II), при этом объем раствора соответствует влагоемкости навески носителя.

Полученный катализатор имеет следующий состав, мас. %: MoO3 - 5,7%; CoO - 1,1%; аморфный алюмосиликат - 84,0%; Al2O3 - остальное.

Пример 4

Катализатор готовят по методике, аналогичной примеру 2, но при этом в смеситель загружают 35,3 г порошка гидрооксида алюминия AlOOH и 70 г аморфного алюмосиликата с соотношением Si/Al, равным 0,25. Навеску приготовленного носителя массой 50 г пропитывают водным раствором, содержащим 3,43 г парамолибдата аммония и 2,37 г нитрата кобальта(II), при этом объем раствора соответствует влагоемкости навески носителя. Полученный катализатор имеет следующий состав, мас. %: MoO3 - 5,5%; CoO - 1,0%; аморфный алюмосиликат - 66,0%; Al2O3 - остальное.

Пример 5

Катализатор готовят по методике, аналогичной примеру 2, но при этом в смеситель загружают 58,8 г порошка гидрооксида алюминия AlOOH и 50 г аморфного алюмосиликата с соотношением Si/Al, равным 0,25. Навеску приготовленного носителя массой 50 г пропитывают водным раствором, содержащим 3,43 г парамолибдата аммония и 2,37 г нитрата кобальта(II), при этом объем раствора соответствует влагоемкости навески носителя.

Полученный катализатор имеет следующий состав (мас. %): MoO3 - 5,7%; CoO - 1,0%; аморфный алюмосиликат - 46,6%; Al2O3 - остальное.

Пример 6

Катализатор готовят по методике, аналогичной примеру 2, но при этом в смеситель загружают 35,3 г порошка гидрооксида алюминия AlOOH и 70 г аморфного алюмосиликата с соотношением Si/Al, равным 0,1. Навеску приготовленного носителя массой 50 г пропитывают водным раствором, содержащим 3,43 г парамолибдата аммония и 2,37 г нитрата кобальта(II), при этом объем раствора соответствует влагоемкости навески носителя.

Полученный катализатор имеет следующий состав, мас. %: MoO3 - 5,7%; CoO - 1,0%; аморфный алюмосиликат - 66,1%; Al2O3 - остальное.

Пример 7

Катализатор готовят по методике, аналогичной примеру 2, но при этом в смеситель загружают 35,3 г порошка гидрооксида алюминия AlOOH и 70 г аморфного алюмосиликата с соотношением Si/Al, равным 0,25. Навеску приготовленного носителя массой 50 г пропитывают водным раствором, содержащим 2,04 г парамолибдата аммония и 1,67 г нитрата кобальта(II), при этом объем раствора соответствует влагоемкости навески носителя.

Полученный катализатор имеет следующий состав, мас. %: MoO3 - 3,0%; CoO - 0,8%; аморфный алюмосиликат - 67,3%; Al2O3 - остальное.

Пример 8

Катализатор готовят по методике, аналогичной примеру 2, но при этом в смеситель загружают 35,3 г порошка гидрооксида алюминия AlOOH и 70 г аморфного алюмосиликата с соотношением Si/Al, равным 0,25. Навеску приготовленного носителя массой 50 г пропитывают водным раствором, содержащим 8,64 г парамолибдата аммония и 10,43 г нитрата кобальта(II), при этом объем раствора соответствует влагоемкости навески носителя.

Полученный катализатор имеет следующий состав, мас. %: MoO3 - 12,0%; CoO - 4,6%; аморфный алюмосиликат - 58,4%; Al2O3 - остальное.

Приготовленные по примерам 2-8 катализаторы имеют удельную поверхность 150-350 м2/г, объем пор 0,3-0,9 см3/г, средний диаметр пор 5-15 нм и представляют собой частицы в форме трилистника с диаметром 1,3-1,7 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell 1471, не менее 1,0 МПа.

Процесс гидроочистки БКК проводят в проточном реакторе в следующих условиях: температура - 280°C, объемная скорость подачи сырья - 4 ч-1, соотношение h3/сырье - 150 нл/нл, давление - 2,5 МПа. В качестве сырья используют широкую фракцию БКК с интервалом кипения н.к. - 220°C, содержанием серы 127 ppm и октановым числом по исследовательскому методу 92,3. Перед каталитическими испытаниями катализаторы сульфидируют при температуре 400°C и атмосферном давлении в потоке сероводорода, идущего с расходом 1 л/час, в течение 2 ч.

Результаты тестирования катализаторов приведены в таблице.

Как видно из приведенных примеров и таблицы, проведение процесса гидроочистки бензина БКК в присутствии катализатора, имеющего оптимальный химический состав и оптимальные текстурные характеристики, обеспечивает получение продукта гидроочистки бензина БКК с низким содержанием серы при минимальной степени гидрирования олефиновых углеводородов и минимальном снижении октанового числа.

bankpatentov.ru

Катализатор гидроочистки бензина каталитического крекинга

Изобретение относится к области катализа, а именно к катализаторам гидроочистки бензина каталитического крекинга с получением компонента товарного бензина с низким содержанием серы при минимальном снижении октанового числа, и может быть использовано в нефтеперерабатывающей промышленности. Описан катализатор, включающий в свой состав кобальт и молибден в форме оксидов; кремний в форме аморфного алюмосиликата, алюминий в форме оксида и аморфного алюмосиликата, при этом компоненты содержатся в следующих концентрациях, мас. %: MoO3 - 3,0-12,0; CoO - 0,8-4,6; аморфный алюмосиликат, - 46,6-84,0%, Al2O3 - остальное. Катализатор имеет удельную поверхность 150-350 м2/г, объем пор 0,3-0,9 см3/г, средний диаметр пор 5-15 нм, представляет собой частицы в форме трилистника с диаметром 1,3-1,7 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell 1471, не менее 1,0 МПа. Технический результат заключается в повышении гидрообессеривающей активности катализатора, а также повышении селективности катализатора, выражающейся в снижении степени гидрирования олефиновых углеводородов и уменьшении величины падения октанового числа бензина каталитического крекинга при проведении гидроочистки. 2 з.п. ф-лы, 1 табл., 8 пр.

 

Изобретение относится к области катализа, а именно к катализаторам селективной гидроочистки бензинов каталитического крекинга (БКК).

Получение моторных топлив с низким содержанием серы является одной из наиболее важных задач современной нефтепереработки. В настоящее время Россия переходит к производству дизельных топлив и бензинов, соответствующих экологическому классу 5 в соответствии с техническим регламентом Таможенного союза "О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и мазуту" (18.10.2011) и содержащих не более 10 ppm серы. БКК является одним из основных компонентов товарных бензинов. Доля БКК в бензиновом фонде НПЗ составляет 30-40%, при этом вместе с БКК в компаундированные бензины поступает до 95% количества серы [Sylvette Brunet, Damien Mey, Guy Perot, Christophe Bouchy, Fabrice Diehl. On the hydrodesulfurization of FCC gasoline: a review. Applied Catalysis A: General. - 2005. - 278. P. 143-172]. Для получения бензинов, соответствующих современным требованиям, необходимо снизить содержание серы в БКК, что, как правило, достигается с использованием процессов гидроочистки.

БКК характеризуется высоким содержанием ароматических и олефиновых углеводородов и обладает относительно высоким октановым числом. Гидрирование олефиновых углеводородов, содержащихся в БКК, при проведении гидроочистки приводит к снижению октанового числа. Таким образом, желательно проводить гидроочистку БКК до требуемого содержания серы при минимальной степени гидрирования олефиновых углеводородов. В связи с этим актуальной задачей является создание новых катализаторов, позволяющих проводить гидроочистку БКК до требуемого содержания серы при минимальной степени гидрирования олефиновых углеводородов и минимальном снижении октанового числа.

Известны различные варианты катализаторов для селективной гидроочистки БКК. Как правило, такие катализаторы содержат оксиды кобальта и молибдена, нанесенные на пористый носитель, при этом наиболее часто используются носители на основе оксида алюминия.

Известен катализатор гидроочистки тяжелой фракции бензина каталитического крекинга, содержащий 8-19 мас. % MoO3 и 2-6 мас. % CoO и/или NiO, остальное - Al2O3, получаемый пропиткой в два этапа предварительно прокаленного алюмооксидного носителя сначала раствором аммония молибденовокислого, а затем раствором азотнокислого кобальта и/или азотнокислого никеля с промежуточной термообработкой при температуре 100-200°C и конечной прокалкой при 400-650°C [Пат. RU №2242501, C10G 45/08, 05.09.2003]. В сочетании с процессом, основанным на разделении БКК на две фракции с интервалами кипения «н.к. - 130-160°C» и «130-160°C - к.к.» с последующей гидроочисткой тяжелой фракции в присутствии указанного катализатора и смешением легкой фракции с гидроочищенной тяжелой фракцией, из широкой фракции БКК обеспечивается получение продукта - компонента товарного бензина - с содержанием серы менее 0,05 мас. % при потере октанового числа менее 0,5 пункта. Недостатком такого катализатора и способа гидроочистки БКК является высокое содержание серы в продукте.

Для повышения селективности катализаторов гидроочистки БКК в их состав могут входить носители, содержащие совместно оксид алюминия и модифицирующие компоненты, такие как оксиды магния, железа, хрома, кобальта, никеля, меди, цинка, иттрия, скандия и других элементов, а также цеолиты.

В заявке US 2005023192 (A1) [C10G 45/04, 03.02.2005] описан катализатор гидроочистки БКК, содержащий носитель на основе оксида алюминия, модифицированный оксидом по крайней мере одного металла, выбранного из ряда: железо, хром, кобальт, никель, медь, цинк, иттрий, скандий, металлы группы лантаноидов, а также по крайней мере один металл групп VIA и VIII Периодической таблицы, нанесенный на носитель.

В патенте EP №101333, B01J 29/70, C10G 45/64, 28.06.2000 описан катализатор, содержащий цеолит ERS-10, металл VIII Периодической таблицы, металл группы VI и один или более оксидов в качестве носителя.

В качестве основного компонента носителя также может использоваться оксид магния. В патенте US №4140626, C10G 23/02, 20.02.1979 описан процесс гидроочистки БКК с использованием катализатора, содержащего металл группы VIB Периодической таблицы и металл группы VIII Периодической таблицы, осажденные на носитель, содержащий не менее 70 мас. % оксида магния.

Общим недостатком указанных катализаторов является высокое остаточное содержание серы в получаемых продуктах.

Наиболее близким по своей технической сущности и достигаемому эффекту к предлагаемому техническому решению является катализатор селективной гидроочистки углеводородного сырья, описанный в Пат. US №5348928, B01J 21/04, 20.09.1994, содержащий в качестве гидрирующего компонента от 4 до 20 мас. % металла группы VIB Периодической таблицы и от 0,5 до 10 мас. % металла группы VIII Периодической таблицы, а в качестве компонента носителя - от 0,5 до 50 мас. % магния и от 0,02 до 10 мас. % щелочного металла. Недостатком такого катализатора также является высокое содержание серы в продукте гидроочистки БКК при типичных условиях проведения процесса гидроочистки БКК. Степень удаления серосодержащих соединений может быть увеличена за счет применения более жестких условий проведения процесса гидроочистки БКК, однако, при таком варианте проведения процесса гидроочистки неизбежно увеличение степени гидрирования олефиновых углеводородов и значительное снижение октанового числа БКК, а также снижение продолжительности межрегенерационного пробега катализатора.

Изобретение решает задачу создания улучшенного катализатора гидроочистки БКК, характеризующегося оптимальным химическим составом и оптимальными текстурными характеристиками, обеспечивающими повышенную гидрообессеривающую активность и повышенную селективность катализатора в гидроочистке БКК, что позволяет получать бензиновую фракцию с низким содержанием серы при минимальной степени гидрирования олефиновых углеводородов и минимальном снижении октанового числа.

Задача решается катализатором гидроочистки бензинов каталитического крекинга БКК, содержащим кобальт и молибден в форме оксидов, кремний в форме аморфного алюмосиликата, алюминий в форме оксида и аморфного алюмосиликата, при этом компоненты содержатся в следующих концентрациях, мас. %: MoO3 - 3,0-12,0; CoO - 0,8-4,6; аморфный алюмосиликат с массовым соотношением Si/Al от 0,1 до 0,9 - 46,6-84,0%; оксид алюминия - остальное; имеющим удельную поверхность 150-350 м2/г, объем пор 0,3-0,9 см3/г, средний диаметр пор 5-15 нм, представляющим собой частицы в форме трилистника с диаметром 1,3-1,7 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell 1471, не менее 1,0 МПа.

Входящий в состав катализатора аморфный алюмосиликат содержит кремний и алюминий в массовом соотношении от 0,1 до 0,9.

Отличительным признаком предлагаемого катализатора гидроочистки БКК по сравнению с прототипом является состав катализатора, при этом катализатор содержит, мас. %: MoO3 - 3,0-12,0; CoO - 0,8-4,6; аморфный алюмосиликат - 46,6-84,0%; Al2O3 - остальное.

Выход содержания компонентов за заявляемые границы приводит к снижению активности и/или селективности катализатора.

Вторым существенным отличительным признаком предлагаемого катализатора является то, что он содержит аморфный алюмосиликат с массовым отношением Si/Al от 0,1 до 0,9. Использование аморфного алюмосиликата с соотношением Si/Al, выходящим за границы указанного диапазона, также приводит к снижению активности и/или селективности катализатора.

Технический эффект предлагаемого катализатора гидроочистки бензинов каталитического крекинга складывается из следующих составляющих:

1. Оптимальный химический состав и оптимальные текстурные характеристики, обеспечивающие получение продукта гидроочистки БКК с низким содержанием серы при минимальной степени гидрирования олефиновых углеводородов и минимальном снижении октанового числа.

2. Аморфный алюмосиликат в составе катализатора позволяет увеличить селективность катализатора в гидроочистке БКК и снизить величину падения октанового числа бензина при проведении гидроочистки. Кислотные центры алюмосиликата способствуют протеканию реакций изомеризации двойной связи и скелетной изомеризации олефиновых углеводородов, что, с одной стороны, приводит к превращению терминальных олефинов в более устойчивые к гидрированию внутренние олефины, а, с другой стороны, способствует образованию более разветвленных углеводородов, обладающих высоким октановым числом.

Описание предлагаемого технического решения.

Сначала готовят носитель, содержащий оксид алюминия и аморфный алюмосиликат. Навески порошка гидрооксида алюминия AlOOH, имеющего структуру бемита или псевдобемита с размером кристаллов 45-60 Å, со средним размером агломератов 40-50 микрометров, содержащего примеси в количестве, мас.%, не более: Na2O - 0,005; Fe2O3 - 0,01; SiO2 - 0,015, и порошка аморфного алюмосиликата с соотношением Si/Al от 0,1 до 0,9 помещают в смеситель, после чего при постоянном перемешивании последовательно добавляют расчетное количество воды и водных растворов азотной или уксусной кислоты.

Компоненты берут в следующих соотношениях: порошки гидрооксида алюминия и аморфного алюмосиликата:вода:азотная или уксусная кислота = 1:0,6-0,8:0,01-0,03. При этом соотношение аморфный алюмосиликат:оксид алюминия составляет от 1:1 до 9:1.

Перемешивание продолжают в течение 10-480 мин при температуре 15-95°C. В результате образуется однородная пластичная паста. Полученную насту экструдируют через фильеру с отверстиями, форма и размер которых обеспечивают получение гранул с поперечным сечением в форме трилистника с диаметром описанной окружности 1,3-1,7 мм. Экструдирование ведут при давлении 0,5-10,0 МПа. Полученный носитель сушат при температуре 100-150°C и прокаливают при температуре 500-600°C. Далее носитель измельчают по длине до частиц требуемого размера.

В результате получают однородный носитель белого цвета, представляющий собой частицы с сечением в виде трилистника с диаметром 1,3-1,7 мм и длиной до 20 мм, имеющие прочность не менее 1,0 кг/мм. Носитель содержит, мас. %: аморфный алюмосиликат 50-90%, Al2O3 - остальное и имеет удельную поверхность 150-350 м2/г, объем пор 0,5-1,1 см3/г, средний диаметр пор 5-15 нм.

Далее готовят пропиточный раствор путем растворения рассчитанных количеств парамолибдата аммония и нитрата кобальта (II) в рассчитанном количестве воды.

Полученным раствором пропитывают носитель, содержащий оксид алюминия и аморфный алюмосиликат, при этом используют пропитку носителя по влагоемкости, либо из избытка раствора. Пропитку проводят при температуре 15-95°C в течение 5-60 мин при периодическом перемешивании, в случае пропитки из избытка раствора, после пропитки избыток раствора сливают с катализатора и используют для приготовления следующих партий катализатора.

После пропитки катализатор сушат на воздухе при температуре 100-250°C, после чего катализатор прокаливают при температуре 450-550°C.

В результате получают катализатор, содержащий, мас. %: MoO3 - 3,0-12,0; CoO - 0,8-4,6; аморфный алюмосиликат с соотношением Si/Al от 0,1 до 0,9 - 46,6-84,0%; Al2O3 - остальное; имеющим удельную поверхность 150-350 м2/г, объем пор 0,3-0,9 см3/г, средний диаметр пор 5-15 нм, представляющим собой частицы в форме трилистника с диаметром 1,3-1,7 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell 1471, не менее 1,0 МПа.

Сущность изобретения иллюстрируется следующими примерами:

Пример 1. Согласно известному техническому решению.

100 г оксида алюминия с влагоемкостью 1,2 см3/г помещают в круглодонную колбу. Затем в колбу с носителем приливают 120 мл водного раствора, содержащего 8,58 г парамолибдата аммония и 5,44 г нитрата кобальта (II). Пропитку проводят в течение 2 ч при постоянном вращении колбы с катализатором, затем сушат при 120°C в течение 12 ч и прокаливают при температуре 538°C в течение 3 ч. Далее 30 г гранул, полученных после прокалки, пропитывают водным раствором, содержащим 3,16 г 6-водного нитрата магния и 0,33 г нитрата натрия, с последующей сушкой при 120°C в течение 12 ч и прокалкой при температуре 427°C в течение 2 ч.

Полученный катализатор имеет следующий состав, мас. %: MoO3 - 6,3%; CoO - 1,4%; MgO - 1,2%; Na2O - 0,3%; Al2O3 - остальное.

Примеры 2-8 иллюстрируют предлагаемое техническое решение.

Пример 2.

В лабораторный смеситель помещают 35,3 г порошка гидрооксида алюминия AlOOH, имеющего структуру бемита с размером кристаллов 45-60 Å, со средним размером агломератов 40-50 мкм, содержащего примеси в количестве, мас.%, не более: Na2O - 0,005; Fe2O3 - 0,01; SiO2 - 0,015, и 70 г аморфного алюмосиликата с соотношением Si/Al, равным 0,9. Далее в смеситель добавляют раствор, полученный смешением 100 мл дистиллированной воды и 8,0 мл концентрированной азотной кислоты, имеющей плотность 1,4 г/см3. Готовую массу продавливают через отверстие фильеры, обеспечивающее получение экструдатов готового носителя с сечением в форме трилистника с размером от вершины трилистника до середины основания от 1,3 до 1,7 мм. Затем проводят термообработку, включающую в себя сушку и прокалку. Сушку экструдатов проводят в сушильном шкафу при температуре 110°C. Затем экструдаты прокаливают в муфельной печи при температуре 550°C в течение 4 ч.

Навеску приготовленного носителя массой 50 г помещают в круглодонную колбу. Затем в колбу с носителем приливают 30 мл водного раствора, содержащего 3,43 г парамолибдата аммония и 2,37 г нитрата кобальта (II). Пропитку проводят в течение 1 ч при температуре водяной бани 70°C и постоянном вращении колбы с готовящимся катализатором. По окончании пропитки получены равномерно окрашенные гранулы, не содержащие светлого пятна в центре на изломе. После пропитки гранулы катализаторов сушат при 120°C в течение 4 ч, затем прокаливают при температуре 550°C в течение 3 ч в токе воздуха.

Полученный катализатор имеет следующий состав, мас.%: MoO3 - 5,5%; CoO - 1,1%; аморфный алюмосиликат - 66,5%; Al2O3 - остальное.

Пример 3.

Катализатор готовят по методике, аналогичной примеру 2, но при этом в смеситель загружают 11,8 г порошка гидрооксида алюминия AlOOH и 90 г аморфного алюмосиликата с соотношением Si/Al равным 0,25. Навеску приготовленного носителя массой 50 г пропитывают водным раствором, содержащим 3,43 г парамолибдата аммония и 2,37 г нитрата кобальта (II), при этом объем раствора соответствует влагоемкости навески носителя.

Полученный катализатор имеет следующий состав, мас. %: MoO3 - 5,7%; CoO - 1,1%; аморфный алюмосиликат - 84,0%; Al2O3 - остальное.

Пример 4.

Катализатор готовят по методике, аналогичной примеру 2, но при этом в смеситель загружают 35,3 г порошка гидрооксида алюминия AlOOH и 70 г аморфного алюмосиликата с соотношением Si/Al равным 0,25. Навеску приготовленного носителя массой 50 г пропитывают водным раствором, содержащим 3,43 г парамолибдата аммония и 2,37 г нитрата кобальта (II), при этом объем раствора соответствует влагоемкости навески носителя. Полученный катализатор имеет следующий состав, мас.%: MoO3 - 5,5%; CoO - 1,0%; аморфный алюмосиликат - 66,0%; Al2O3 - остальное.

Пример 5.

Катализатор готовят по методике, аналогичной примеру 2, но при этом в смеситель загружают 58,8 г порошка гидрооксида алюминия AlOOH и 50 г аморфного алюмосиликата с соотношением Si/Al равным 0,25. Навеску приготовленного носителя массой 50 г пропитывают водным раствором, содержащим 3,43 г парамолибдата аммония и 2,37 г нитрата кобальта (II), при этом объем раствора соответствует влагоемкости навески носителя.

Полученный катализатор имеет следующий состав, мас.%: MoO3 - 5,7%; CoO - 1,0%; аморфный алюмосиликат - 46,6%; Al2O3 - остальное.

Пример 6.

Катализатор готовят по методике, аналогичной примеру 2, но при этом в смеситель загружают 35,3 г порошка гидрооксида алюминия AlOOH и 70 г аморфного алюмосиликата с соотношением Si/Al равным 0,1. Навеску приготовленного носителя массой 50 г пропитывают водным раствором, содержащим 3,43 г парамолибдата аммония и 2,37 г нитрата кобальта (II), при этом объем раствора соответствует влагоемкости навески носителя.

Полученный катализатор имеет следующий состав, мас. %: MoO3 - 5,7%; CoO - 1,0%; аморфный алюмосиликат - 66,1%; Al2O3 - остальное.

Пример 7.

Катализатор готовят по методике, аналогичной примеру 2, но при этом в смеситель загружают 35,3 г порошка гидрооксида алюминия AlOOH и 70 г аморфного алюмосиликата с соотношением Si/Al равным 0,25. Навеску приготовленного носителя массой 50 г пропитывают водным раствором, содержащим 2,04 г парамолибдата аммония и 1,67 г нитрата кобальта (II), при этом объем раствора соответствует влагоемкости навески носителя.

Полученный катализатор имеет следующий состав, мас. %: MoO3 - 3,0%; CoO - 0,8%; аморфный алюмосиликат - 67,3%; Al2O3 - остальное.

Пример 8.

Катализатор готовят по методике, аналогичной примеру 2, но при этом в смеситель загружают 35,3 г порошка гидрооксида алюминия AlOOH и 70 г аморфного алюмосиликата с соотношением Si/Al равным 0,25. Навеску приготовленного носителя массой 50 г пропитывают водным раствором, содержащим 8,64 г парамолибдата аммония и 10,43 г нитрата кобальта (II), при этом объем раствора соответствует влагоемкости навески носителя.

Полученный катализатор имеет следующий состав, мас. %: MoO3 - 12,0%; CoO - 4,6%; аморфный алюмосиликат - 58,4%; Al2O3 - остальное.

Приготовленные по примерам 2-8 катализаторы имеют удельную поверхность 150-350 м2/г, объем пор 0,3-0,9 см3/г, средний диаметр пор 5-15 нм и представляет собой частицы в форме трилистника с диаметром 1,3-1,7 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell 1471, не менее 1,0 МПа.

Тестирование катализаторов проводят в проточном реакторе в следующих условиях: температура 280°C, объемная скорость подачи сырья - 4 ч-1, соотношение h3/сырье - 150 нл/нл, давление - 2,5 МПа. В качестве сырья используют широкую фракцию БКК с интервалом кипения н.к. - 220°C, содержанием серы 127 ppm и октановым числом по исследовательскому методу 92,3. Перед каталитическими испытаниями катализатор сульфидируют при температуре 400°C и атмосферном давлении в потоке сероводорода, идущего с расходом 1 л/ч, в течение 2 ч.

Результаты тестирования катализаторов приведены в таблице.

Как видно из приведенных примеров, катализаторы гидроочистки бензина каталитического крекинга имеют более высокую активность и селективность в сравнении с катализатором-прототипом.

1. Катализатор гидроочистки бензина каталитического крекинга, включающий в свой состав кобальт, молибден, алюминий, отличающийся тем, что он содержит кобальт и молибден в форме оксидов, кремний в форме аморфного алюмосиликата, алюминий в форме оксида и аморфного алюмосиликата, при этом компоненты содержатся в следующих концентрациях, мас.%: MoO3 - 3,0-12,0; СоО - 0,8-4,6; аморфный алюмосиликат - 46,6 - 84,0%; Al2O3 - остальное.

2. Катализатор по п. 1, отличающийся тем, что он имеет удельную поверхность 150-350 м2/г, объем пор 0,3-0,9 см3/г, средний диаметр пор 5-15 им и представляет собой частицы в форме трилистника с диаметром 1,3-1,7 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell 1471, не менее 1,0 МПа.

3. Катализатор по п. 1, отличающийся тем, что входящий в состав катализатора аморфный алюмосиликат содержит кремний и алюминий в массовом соотношении от 0,1 до 0,9.

www.findpatent.ru

Способ гидроочистки бензина каталитического крекинга

Настоящее изобретение относится к химической технологии, в частности к способам гидроочистки бензина каталитического крекинга, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности.

Основная цель, реализуемая в процессе гидроочистки бензина каталитического крекинга (БКК), - уменьшить содержание серы в нем с 0,08-0,20 мас.% до уровня не более 0,05% маC. без заметного снижения его октанового числа. Основной реакцией в процессе, наряду с гидрогенолизом сернистых соединений, является гидрирование диолефиновых углеводородов (УВ) при незначительном вовлечении в превращение моноолефиновых УВ.

Известен способ гидроочистки БКК в присутствии алюмокобальтмолибденового катализатора АКМ, содержащего не менее 12,0 мас.% МоО3 и не менее 4,0 мас.% СоО, остальное - носитель. Основные параметры процесса: давление 2 МПа, объемная скорость подачи сырья 3-10 ч-1 . Уменьшение содержания серы до 0,1 мас.% (при содержании серы в исходном бензине 0,2 мас.%) достигается при температуре 250-300° С, а уменьшение содержания серы до 0,05 мас.% - при температуре 280-350° С [Хавкин В.А., Терегулов Д.Х., Осипов Л.Н. и др. // Химия и технология топлив и масел, 1973, №1, с. 22-24 или Хавкин В.А., Гуляева Л.А., Осипов Л.Н., Каминский Э.Ф.// Химия и технология топлив и масел, 2001, №1, с. 10-13]. Недостатком данного способа является низкая гидрообессеривающая активность катализатора, вызывающая необходимость проведения процесса гидроочистки при высоких температурах, что в свою очередь приводит к заметной потере октанового числа бензина (1-2 пункта).

Наиболее близким к настоящему изобретению по технической сущности и достигаемым результатам является способ гидроочистки БКК, включающий предварительное фракционирование исходного бензина на легкую н.к. - 120° С и тяжелую 120° С - к.к. фракции с последующей гидроочисткой тяжелой фракции в присутствии катализатора КГМ-70 (ТУ 301-03-87-89), содержащего 14,0-16,0 мас.% МоО3 и 2,8-4,0 мас.% NiO, остальное - носитель, и последующим смешением легкой фракции с гидроочищенной тяжелой фракцией. Процесс гидроочистки проводят при температуре 250-290° С, давлении 3 МПа, объемной скорости подачи сырья 2-3 ч-1 [Хавкин В.А., Гуляева Л.А., Осипов Л.Н., Каминский Э.Ф. //Химия и технология топлив и масел, 2001, №1, с. 10-13]. Недостатком данного способа является низкая гидрообессеривающая активность катализатора, что не позволяет получать компонент товарного бензина (после смешения негидроочищенной фракции БКК с гидроочищенной фракцией) с содержанием серы менее 0,05 мас.% при незначительной потере октанового числа (не более 0,5 пункта).

Технической задачей предлагаемого изобретения является разработка эффективного способа гидроочистки бензина каталитического крекинга, позволяющего получать компонент товарного бензина с содержанием серы менее 0,05 мас.% и при небольшой потере октанового числа (не более 0,5 пункта).

Данная техническая задача решается путем разделения БКК на фракции н.к. - 130-160° С и 130-160° С - к.к. с последующей гидроочисткой тяжелой фракции БКК 130-160° С - к.к. при температуре 200-320° С, давлении 1,0-3,5 МПа, объемной скорости подачи сырья 1-10 ч-1 в присутствии катализатора гидроочистки, содержащего 8-19 мас.% МоО3 и 2-6 мас.% СоО и/или NiO, остальное - Аl2О3, полученного пропиткой в два этапа предварительно прокаленного алюмооксидного носителя сначала раствором аммония молибденовокислого, а затем раствором азотнокислого кобальта и/или азотнокислого никеля с промежуточной термообработкой при температуре 100-200° С и конечной прокалкой при 400-650° С. После смешения легкой негидроочищенной фракции (н.к. - 130-160° С) с тяжелой гидроочищенной фракцией БКК (130-160° С - к.к.) содержание серы в продукте (компоненте товарного бензина) составляет менее 0,05 мас.%, а потеря октанового числа - не более 0,5 пункта.

Общими признаками предлагаемого изобретения и прототипа являются предварительное фракционирование БКК на легкую и тяжелую фракции, гидроочистка тяжелой фракции и последующее смешение легкой фракции и гидроочищенной тяжелой. Отличительными признаками предлагаемого изобретения по сравнению с прототипом являются нижеследующие:

выделение из БКК тяжелой фракции с более высоким началом кипения (130-160° С вместо 120° С), что обеспечивает при последующей гидроочистке меньшую потерю октанового числа, т.к. в ней содержится меньше олефиновых углеводородов; олефиновые углеводороды обладают высоким октановым числом, и их гидрирование до предельных углеводородов нежелательно;

проведение процесса гидроочистки при следующих технологических параметрах: температура 200-320° С, давление 1,0-3,5 МПа, объемная скорость подачи сырья 1-10 ч-1 в присутствии катализатора, содержащего 8-19 мас.% МоО3 и 2-6 мас.% СоО и/или NiO и получаемого методом двухкратной пропитки алюмооксидного носителя сначала раствором аммония молибденовокислого, а затем раствором азотнокислого кобальта и/или азотнокислого никеля с промежуточной термообработкой при температуре 100-200° С и конечной прокалкой при 400-650° С.

Предлагаемая совокупность признаков способа гидроочистки бензина каталитического крекинга соответствует, по мнению авторов, условию патентоспособности “изобретательский уровень” по нижеследующим соображениям. Из литературных данных на дату подачи заявки на настоящее изобретение не было известно, что предлагаемая совокупность признаков приводит к решению вышеуказанной задачи. А именно, что использование алюмокобальтмолибденового и/или алюмоникельмолибденового катализатора, получаемого методом двукратной пропитки алюмооксидного носителя сначала раствором аммония молибденовокислого, а затем раствором азотнокислого кобальта и/или азотнокислого никеля и содержащего 8-19 мас.% МоО3 и 2-6 мас.% СоО и/или NiO, позволяет получать бензин каталитического крекинга с содержанием серы не более 0,05 мас.% и потерей октанового числа не более 0,5 пункта при предварительном разделении БКК на фракции н.к. - 130-160° С и 130-160° С - к.к. и гидроочистке тяжелой фракции при следующих технологических параметрах: температура 200-320° С, давление 1,0-3,5 МПа, объемная скорость подачи сырья 1-10 ч-1 с последующим смешением легкой и гидроочищенной тяжелой фракций.

Сопоставительная характеристика известных и предлагаемого способов гидроочистки БКК приведена в табл. 1.

Предлагаемое изобретение иллюстрируется следующими примерами.

Пример 1. Исходную фракцию бензина каталитического крекинга (35-220° С, содержание серы 0,08 мас.%) разделяют на две фракции: легкую (35-160° С) - выход 75 мас.%, содержание серы 0,055 мас.% и тяжелую (160° С-220° С) с содержанием серы 0,16 мас.% Тяжелую фракцию подвергают гидроочистке в присутствии катализатора по примеру 19, содержащего 8 мас.% МоО3 и 2 мас.% СоО, остальное - Аl2О3, полученного пропиткой в два этапа предварительно прокаленного при температуре 650° С алюмооксидного носителя сначала раствором аммония молибденовокислого, а затем раствором азотнокислого кобальта с промежуточной термообработкой при температуре 200° С и конечной прокалкой при 650° С. Процесс гидроочистки проводят при следующих условиях: температура 200° С, давление 1,0 МПа, объемная скорость подачи сырья 1,0 ч-1 (режим 1). Затем гидроочищенную тяжелую фракцию смешивают с негидроочищенной легкой фракцией. Содержание серы в продукте смешения - компоненте товарного бензина - 0,05 мас.%, а потеря октанового числа (исследовательский метод) при получении компонента товарного бензина менее 0,5 пункта.

Примеры 2-9. Аналогично примеру 1, тяжелую фракцию БКК подвергают гидроочистке в присутствии катализаторов, полученных по примерам 20-27 соответственно, в условиях соответствующих режиму 1. Результаты гидроочистки и качество продукта смешения гидроочищенной тяжелой фракции с негидроочищенной легкой фракцией приведены в табл.2.

Примеры 10 (прототип). Аналогично примеру 1, тяжелую фракцию БКК подвергают гидроочистке в присутствии катализатора КГМ-70 (ТУ 38.3011111-87) в условиях, соответствующих режиму 1. Содержание серы в продукте смешения 0,059 мас.%, а потеря октанового числа (исследовательский метод) 0,6 пункта.

Пример 11. Исходную фракции бензина каталитического крекинга (30-205° С, содержание серы 0,10 мас.%) разделяют на две фракции: легкую (30-130° С) - выход 65 мас.%, содержание серы 0,05 мас.% и тяжелую (130-205° С) с содержанием серы 0,20 мас.%. Тяжелую фракцию подвергают гидроочистке в присутствии катализатора, полученного по примеру 20 при следующих условиях: температура 250° С, давление 2,0 МПа, объемная скорость подачи сырья 3 ч-1 (режим 2). Затем гидроочищенную тяжелую фракцию смешивают с негидроочищенной легкой фракцией. Содержание серы в продукте смешения 0,040 мас.%, а потеря октанового числа (исследовательский метод) менее 0,5 пункта.

Примеры 12-13. Аналогично примеру 11, тяжелую фракцию БКК подвергают гидроочистке в присутствии катализаторов, полученных по примерам 23 и 26 соответственно, в условиях соответствующих режиму 2. Результаты гидроочистки и качество продукта смешения гидроочищенной тяжелой фракции с негидроочищенной легкой фракцией приведены в табл.2.

Примеры 14 (прототип). Аналогично примеру 11, тяжелую фракцию БКК подвергают гидроочистке в присутствии катализатора КГМ-70 в условиях, соответствующих режиму 2. Содержание серы в продукте смешения 0,059 мас.%, а потеря октанового числа (исследовательский метод) 0,8 пункта.

Пример 15. Исходную фракции бензина каталитического крекинга (30-190° С, содержание серы 0,07 мас.%) разделяют на две фракции: легкую (30-130° С) с выходом 60 мас.% и с содержанием серы 0,04 мас.% и тяжелую (130° С-190° С) с содержанием серы 0,11 мас.%. Тяжелую фракцию подвергают гидроочистке в присутствии катализатора, полученного по примеру 20, при следующих условиях: температура 320° С, давление 3,5 МПа, объемная скорость подачи сырья 10 ч -1 (режим 3). Затем гидроочищенную тяжелую фракцию смешивают с негидроочищенной легкой фракцией. Содержание серы в продукте смешения 0,031 мас.%, а потеря октанового числа (исследовательский метод) 0,5 пункта.

Примеры 16-17. Аналогично примеру 15, тяжелую фракцию БКК подвергают гидроочистке в присутствии катализаторов, полученных по примерам 23 и 26 соответственно, в условиях, соответствующих режиму 3. Результаты гидроочистки и качество продукта смешения гидроочищенной тяжелой фракции с негидроочищенной легкой фракцией приведены в табл. 2.

Примеры 18 (прототип). Аналогично примеру 15, тяжелую фракцию БКК подвергают гидроочистке в присутствии катализатора КГМ-70 в условиях, соответствующих режиму 3. Содержание серы в продукте смешения 0,036 мас.%, а потеря октанового числа (исследовательский метод) 1, 2 пункта.

Пример 19. 90 г предварительно прокаленного при 650° С алюмооксидного носителя пропитывают раствором, содержащим 9,8 г аммония молибденовокислого (NН4)6Мо7O24· 4Н2O. Пропитанный носитель сушат при 200° С в течение 6 ч, затем пропитывают раствором, содержащим 7,8 г азотнокислого кобальта - Со(NО3)2· 6Н2O, сушат при 120° С в течение 6 ч и прокаливают при 650° С в течение 4 ч. Состав полученного катализатора: 8 мас.% МоО3, 2 мас.% СоО и остальное - Аl2О3.

Пример 19-27. Аналогично примеру 19, изменяя состав активных компонентов и температуру промежуточной прокалки носителя, были получены образцы катализаторов по примерам 19-27, представленные в табл. 3.

Из представленных в табл. 2 данных видно, что катализаторы, полученные по примерам 19-27, в условиях по предлагаемому способу (режимы 1-3) обеспечивают получение продукта (компонента товарного бензина), отвечающего нормам на содержание серы (менее 0,05 мас.%), тогда как в аналогичных условиях катализатор КГМ-70, использующийся в способе гидроочистки по прототипу, показывает более низкую активность и не обеспечивает требуемой нормы по содержанию серы. Кроме того, предлагаемый способ обеспечивает минимальную потерю октанового числа компонента товарного бензина (не более 0,5 пункта), тогда как в способе по прототипу в аналогичных условиях наблюдается большая потеря октанового числа.

bankpatentov.ru

способ гидроочистки бензина каталитического крекинга - патент РФ 2242501

Настоящее изобретение относится к химической технологии, в частности к способам гидроочистки бензина каталитического крекинга, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Сущность изобретения заключается в способе гидроочистки бензина каталитического крекинга, включающем разделение исходной широкой фракции бензина на легкую н.к. - 130-160°С и тяжелую фракции 130-160°С - к.к. с последующей гидроочисткой тяжелой фракции в присутствии катализатора и смешением легкой фракции с гидроочищенной тяжелой фракцией. Процесс гидроочистки тяжелой фракции проводят при температуре 200-320°С, давлении 1,0-3,5 МПа, объемной скорости подачи сырья 1-10 ч-1 в присутствии катализатора, содержащего 8-19% МоО3 и 2-6% СоО и/или NiO, остальное - Al2О3, полученного пропиткой в два этапа предварительно прокаленного алюмооксидного носителя сначала раствором аммония молибденовокислого, а затем раствором азотнокислого кобальта и/или азотнокислого никеля с промежуточной термообработкой при температуре 100-200°С и конечной прокалкой при 400-650°С. Технический результат состоит в получении продукта - компонента товарного бензина - с содержанием серы менее 0,05 мас.% при потере октанового числа менее 0,5 пункта. 3 табл.

Настоящее изобретение относится к химической технологии, в частности к способам гидроочистки бензина каталитического крекинга, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности.

Основная цель, реализуемая в процессе гидроочистки бензина каталитического крекинга (БКК), - уменьшить содержание серы в нем с 0,08-0,20 мас.% до уровня не более 0,05% маC. без заметного снижения его октанового числа. Основной реакцией в процессе, наряду с гидрогенолизом сернистых соединений, является гидрирование диолефиновых углеводородов (УВ) при незначительном вовлечении в превращение моноолефиновых УВ.

Известен способ гидроочистки БКК в присутствии алюмокобальтмолибденового катализатора АКМ, содержащего не менее 12,0 мас.% МоО3 и не менее 4,0 мас.% СоО, остальное - носитель. Основные параметры процесса: давление 2 МПа, объемная скорость подачи сырья 3-10 ч-1 . Уменьшение содержания серы до 0,1 мас.% (при содержании серы в исходном бензине 0,2 мас.%) достигается при температуре 250-300° С, а уменьшение содержания серы до 0,05 мас.% - при температуре 280-350° С [Хавкин В.А., Терегулов Д.Х., Осипов Л.Н. и др. // Химия и технология топлив и масел, 1973, №1, с. 22-24 или Хавкин В.А., Гуляева Л.А., Осипов Л.Н., Каминский Э.Ф.// Химия и технология топлив и масел, 2001, №1, с. 10-13]. Недостатком данного способа является низкая гидрообессеривающая активность катализатора, вызывающая необходимость проведения процесса гидроочистки при высоких температурах, что в свою очередь приводит к заметной потере октанового числа бензина (1-2 пункта).

Наиболее близким к настоящему изобретению по технической сущности и достигаемым результатам является способ гидроочистки БКК, включающий предварительное фракционирование исходного бензина на легкую н.к. - 120° С и тяжелую 120° С - к.к. фракции с последующей гидроочисткой тяжелой фракции в присутствии катализатора КГМ-70 (ТУ 301-03-87-89), содержащего 14,0-16,0 мас.% МоО3 и 2,8-4,0 мас.% NiO, остальное - носитель, и последующим смешением легкой фракции с гидроочищенной тяжелой фракцией. Процесс гидроочистки проводят при температуре 250-290° С, давлении 3 МПа, объемной скорости подачи сырья 2-3 ч-1 [Хавкин В.А., Гуляева Л.А., Осипов Л.Н., Каминский Э.Ф. //Химия и технология топлив и масел, 2001, №1, с. 10-13]. Недостатком данного способа является низкая гидрообессеривающая активность катализатора, что не позволяет получать компонент товарного бензина (после смешения негидроочищенной фракции БКК с гидроочищенной фракцией) с содержанием серы менее 0,05 мас.% при незначительной потере октанового числа (не более 0,5 пункта).

Технической задачей предлагаемого изобретения является разработка эффективного способа гидроочистки бензина каталитического крекинга, позволяющего получать компонент товарного бензина с содержанием серы менее 0,05 мас.% и при небольшой потере октанового числа (не более 0,5 пункта).

Данная техническая задача решается путем разделения БКК на фракции н.к. - 130-160° С и 130-160° С - к.к. с последующей гидроочисткой тяжелой фракции БКК 130-160° С - к.к. при температуре 200-320° С, давлении 1,0-3,5 МПа, объемной скорости подачи сырья 1-10 ч-1 в присутствии катализатора гидроочистки, содержащего 8-19 мас.% МоО3 и 2-6 мас.% СоО и/или NiO, остальное - Аl2О3, полученного пропиткой в два этапа предварительно прокаленного алюмооксидного носителя сначала раствором аммония молибденовокислого, а затем раствором азотнокислого кобальта и/или азотнокислого никеля с промежуточной термообработкой при температуре 100-200° С и конечной прокалкой при 400-650° С. После смешения легкой негидроочищенной фракции (н.к. - 130-160° С) с тяжелой гидроочищенной фракцией БКК (130-160° С - к.к.) содержание серы в продукте (компоненте товарного бензина) составляет менее 0,05 мас.%, а потеря октанового числа - не более 0,5 пункта.

Общими признаками предлагаемого изобретения и прототипа являются предварительное фракционирование БКК на легкую и тяжелую фракции, гидроочистка тяжелой фракции и последующее смешение легкой фракции и гидроочищенной тяжелой. Отличительными признаками предлагаемого изобретения по сравнению с прототипом являются нижеследующие:

выделение из БКК тяжелой фракции с более высоким началом кипения (130-160° С вместо 120° С), что обеспечивает при последующей гидроочистке меньшую потерю октанового числа, т.к. в ней содержится меньше олефиновых углеводородов; олефиновые углеводороды обладают высоким октановым числом, и их гидрирование до предельных углеводородов нежелательно;

проведение процесса гидроочистки при следующих технологических параметрах: температура 200-320° С, давление 1,0-3,5 МПа, объемная скорость подачи сырья 1-10 ч-1 в присутствии катализатора, содержащего 8-19 мас.% МоО3 и 2-6 мас.% СоО и/или NiO и получаемого методом двухкратной пропитки алюмооксидного носителя сначала раствором аммония молибденовокислого, а затем раствором азотнокислого кобальта и/или азотнокислого никеля с промежуточной термообработкой при температуре 100-200° С и конечной прокалкой при 400-650° С.

Предлагаемая совокупность признаков способа гидроочистки бензина каталитического крекинга соответствует, по мнению авторов, условию патентоспособности “изобретательский уровень” по нижеследующим соображениям. Из литературных данных на дату подачи заявки на настоящее изобретение не было известно, что предлагаемая совокупность признаков приводит к решению вышеуказанной задачи. А именно, что использование алюмокобальтмолибденового и/или алюмоникельмолибденового катализатора, получаемого методом двукратной пропитки алюмооксидного носителя сначала раствором аммония молибденовокислого, а затем раствором азотнокислого кобальта и/или азотнокислого никеля и содержащего 8-19 мас.% МоО3 и 2-6 мас.% СоО и/или NiO, позволяет получать бензин каталитического крекинга с содержанием серы не более 0,05 мас.% и потерей октанового числа не более 0,5 пункта при предварительном разделении БКК на фракции н.к. - 130-160° С и 130-160° С - к.к. и гидроочистке тяжелой фракции при следующих технологических параметрах: температура 200-320° С, давление 1,0-3,5 МПа, объемная скорость подачи сырья 1-10 ч-1 с последующим смешением легкой и гидроочищенной тяжелой фракций.

Сопоставительная характеристика известных и предлагаемого способов гидроочистки БКК приведена в табл. 1.

способ гидроочистки бензина каталитического крекинга, патент № 2242501

Предлагаемое изобретение иллюстрируется следующими примерами.

Пример 1. Исходную фракцию бензина каталитического крекинга (35-220° С, содержание серы 0,08 мас.%) разделяют на две фракции: легкую (35-160° С) - выход 75 мас.%, содержание серы 0,055 мас.% и тяжелую (160° С-220° С) с содержанием серы 0,16 мас.% Тяжелую фракцию подвергают гидроочистке в присутствии катализатора по примеру 19, содержащего 8 мас.% МоО3 и 2 мас.% СоО, остальное - Аl2О3, полученного пропиткой в два этапа предварительно прокаленного при температуре 650° С алюмооксидного носителя сначала раствором аммония молибденовокислого, а затем раствором азотнокислого кобальта с промежуточной термообработкой при температуре 200° С и конечной прокалкой при 650° С. Процесс гидроочистки проводят при следующих условиях: температура 200° С, давление 1,0 МПа, объемная скорость подачи сырья 1,0 ч-1 (режим 1). Затем гидроочищенную тяжелую фракцию смешивают с негидроочищенной легкой фракцией. Содержание серы в продукте смешения - компоненте товарного бензина - 0,05 мас.%, а потеря октанового числа (исследовательский метод) при получении компонента товарного бензина менее 0,5 пункта.

Примеры 2-9. Аналогично примеру 1, тяжелую фракцию БКК подвергают гидроочистке в присутствии катализаторов, полученных по примерам 20-27 соответственно, в условиях соответствующих режиму 1. Результаты гидроочистки и качество продукта смешения гидроочищенной тяжелой фракции с негидроочищенной легкой фракцией приведены в табл.2.

Примеры 10 (прототип). Аналогично примеру 1, тяжелую фракцию БКК подвергают гидроочистке в присутствии катализатора КГМ-70 (ТУ 38.3011111-87) в условиях, соответствующих режиму 1. Содержание серы в продукте смешения 0,059 мас.%, а потеря октанового числа (исследовательский метод) 0,6 пункта.

Пример 11. Исходную фракции бензина каталитического крекинга (30-205° С, содержание серы 0,10 мас.%) разделяют на две фракции: легкую (30-130° С) - выход 65 мас.%, содержание серы 0,05 мас.% и тяжелую (130-205° С) с содержанием серы 0,20 мас.%. Тяжелую фракцию подвергают гидроочистке в присутствии катализатора, полученного по примеру 20 при следующих условиях: температура 250° С, давление 2,0 МПа, объемная скорость подачи сырья 3 ч-1 (режим 2). Затем гидроочищенную тяжелую фракцию смешивают с негидроочищенной легкой фракцией. Содержание серы в продукте смешения 0,040 мас.%, а потеря октанового числа (исследовательский метод) менее 0,5 пункта.

Примеры 12-13. Аналогично примеру 11, тяжелую фракцию БКК подвергают гидроочистке в присутствии катализаторов, полученных по примерам 23 и 26 соответственно, в условиях соответствующих режиму 2. Результаты гидроочистки и качество продукта смешения гидроочищенной тяжелой фракции с негидроочищенной легкой фракцией приведены в табл.2.

Примеры 14 (прототип). Аналогично примеру 11, тяжелую фракцию БКК подвергают гидроочистке в присутствии катализатора КГМ-70 в условиях, соответствующих режиму 2. Содержание серы в продукте смешения 0,059 мас.%, а потеря октанового числа (исследовательский метод) 0,8 пункта.

Пример 15. Исходную фракции бензина каталитического крекинга (30-190° С, содержание серы 0,07 мас.%) разделяют на две фракции: легкую (30-130° С) с выходом 60 мас.% и с содержанием серы 0,04 мас.% и тяжелую (130° С-190° С) с содержанием серы 0,11 мас.%. Тяжелую фракцию подвергают гидроочистке в присутствии катализатора, полученного по примеру 20, при следующих условиях: температура 320° С, давление 3,5 МПа, объемная скорость подачи сырья 10 ч -1 (режим 3). Затем гидроочищенную тяжелую фракцию смешивают с негидроочищенной легкой фракцией. Содержание серы в продукте смешения 0,031 мас.%, а потеря октанового числа (исследовательский метод) 0,5 пункта.

Примеры 16-17. Аналогично примеру 15, тяжелую фракцию БКК подвергают гидроочистке в присутствии катализаторов, полученных по примерам 23 и 26 соответственно, в условиях, соответствующих режиму 3. Результаты гидроочистки и качество продукта смешения гидроочищенной тяжелой фракции с негидроочищенной легкой фракцией приведены в табл. 2.

Примеры 18 (прототип). Аналогично примеру 15, тяжелую фракцию БКК подвергают гидроочистке в присутствии катализатора КГМ-70 в условиях, соответствующих режиму 3. Содержание серы в продукте смешения 0,036 мас.%, а потеря октанового числа (исследовательский метод) 1, 2 пункта.

Пример 19. 90 г предварительно прокаленного при 650° С алюмооксидного носителя пропитывают раствором, содержащим 9,8 г аммония молибденовокислого (NН4)6Мо7O24· 4Н2O. Пропитанный носитель сушат при 200° С в течение 6 ч, затем пропитывают раствором, содержащим 7,8 г азотнокислого кобальта - Со(NО3)2· 6Н2O, сушат при 120° С в течение 6 ч и прокаливают при 650° С в течение 4 ч. Состав полученного катализатора: 8 мас.% МоО3, 2 мас.% СоО и остальное - Аl2О3.

Пример 19-27. Аналогично примеру 19, изменяя состав активных компонентов и температуру промежуточной прокалки носителя, были получены образцы катализаторов по примерам 19-27, представленные в табл. 3.

способ гидроочистки бензина каталитического крекинга, патент № 2242501

Из представленных в табл. 2 данных видно, что катализаторы, полученные по примерам 19-27, в условиях по предлагаемому способу (режимы 1-3) обеспечивают получение продукта (компонента товарного бензина), отвечающего нормам на содержание серы (менее 0,05 мас.%), тогда как в аналогичных условиях катализатор КГМ-70, использующийся в способе гидроочистки по прототипу, показывает более низкую активность и не обеспечивает требуемой нормы по содержанию серы. Кроме того, предлагаемый способ обеспечивает минимальную потерю октанового числа компонента товарного бензина (не более 0,5 пункта), тогда как в способе по прототипу в аналогичных условиях наблюдается большая потеря октанового числа.

способ гидроочистки бензина каталитического крекинга, патент № 2242501

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ гидроочистки бензина каталитического крекинга, включающий предварительное фракционирование исходного бензина на легкую и тяжелую фракции с последующей гидроочисткой тяжелой фракции в присутствии катализатора и смешением легкой фракции с гидроочищенной тяжелой фракцией, отличающийся тем, что легкая фракция имеет фракционный состав н.к.-130-160°С и тяжелая фракция 130-160°С-к.к., а процесс гидроочистки тяжелой фракции проводят при температуре 200-320°С, давлении 1,0-3,5 МПа, объемной скорости подачи сырья 1-10 ч-1 в присутствии катализатора, содержащего 8-19 мас.% МоО3 и 2-6 мас.% СоО и/или NiO, остальное - Аl2O3, полученного пропиткой в два этапа предварительно прокаленного алюмооксидного носителя сначала раствором аммония молибденовокислого, а затем раствором азотнокислого кобальта и/или азотнокислого никеля с промежуточной термообработкой при температуре 100-200°С и конечной прокалкой при 400-650°С.

www.freepatent.ru


Смотрите также