Источники энергии – Нефтяные месторождения (Нефть). Бензин скважина топливо труба


Как делают бензин и масло: дело — труба — журнал За рулем

Горючее, масла, смазки — всё получают из нефти. Автор проследил, как долго топливо и масло находятся в одной емкости и когда их пути расходятся. А начал с поиска места их рождения.

1

1

Чтобы найти залежи «черного золота», сначала проводят сейсморазведку. Искусственно вызванные сейсмические волны уходят на несколько километров вглубь Земли, часть отражается, наталкиваясь на слои породы, часть преломляется и идет дальше.

2

2

По поведению волн делают выводы о структуре недр. На разработанном ЛУКОЙЛом Уньвинском месторождении (под Пермью) для возбуждения волн используют взрывы. Территория в 223 км² поделена на квадраты 250×250 м. По продольным линиям бурят скважины для закладки зарядов, поперек прокладывают кабели с сейсмоприемниками, собирающими информацию, которая приходит из-под земли. Мощность каждого заряда, заложенного на глубину несколько метров, — около 400 г.

3

3

Современные технологии позволяют вести работы без вреда для растений: компактные буровые установки буксируют снегоходами.

4

4

В районе разведки проложено 750 таких «кос» с датчиками, длина каждой 300 м. Данные поступают в центр обработки, в итоге формируют трехмерную модель структуры почвы.

5

5

Глубина залегания нефтенесущего пласта меньше, чем длина скважины. Если первый параметр составляет 1700–1900 м, то второй достигает 2500 м. Финальный отрезок, забой, идет горизонтально, вдоль слоя, богатого полезными ископаемыми. Толщина слоя всего несколько метров, и ствол шахты нужно вывести точно в него, пробурив перед этим более 2000 м! Угол наклона набирают постепенно: примерно с 14º на отметке 800 м до 60–70º к 2200 м. Его задают настройками на долоте бура. Сами трубы в стволе также скрепляют под углом. Длина каждой 9–11 м. После спуска в шахту ее прикручивают к предыдущей секции и цементируют по всей длине. Состав раствора зависит от характера породы, в которой останется труба.

6

6

Никаких подземных озер с «черным золотом», разумеется, нет. Нефть находится в пористой породе, откуда ее вымывают водой под давлением. В добывающих скважинах трудятся мощные электроцентробежные насосы. Штанговые насосы («качалки»), с меньшей производительностью, используют для выкачивания остаточных запасов нефти из слоя. Из-за наклона шахт десяток скважин, занимающих площадь в пару сотен квадратных метров, качает нефть с территории во много раз большей. Такое объединение называют кустом.

7

7

Нефтяные скважины прокладывают турбобуром. С винтовым, используемым для бытовых скважин, у него мало общего.

24

24

Установленные на поверхности насосы под давлением подают в агрегат буровой раствор (его состав зависит от типа породы), который, попадая на лопатки, вращает турбину. На ее валу установлено долото (на маленьком фото), прогрызающее породу.

25

25

Для большей мощности в бур встраивают многоступенчатые турбины, чтобы увеличить крутящий момент. Перемолотая порода подается наверх вместе с отработавшим буровым раствором.

27

27

9

9

На Уньвинском месторождении, далеко не самом крупном, 60 кустов. У каждого — групповая автоматическая замерная установка, которая контролирует поочередно добычу каждой скважины. А дальше нефтесодержащая жидкость уже единым потоком идет на станцию очистки.

10

10

Нефть оставляет на стенках труб асфальтопарафиновые отложения. Для их ликвидации в скважинах используют лебедку Сулейманова. Ее устройство просто: трос опускает на заданную глубину скребок, после чего вытягивает его обратно. Такую механическую обработку повторяют до шести раз в сутки.

12

12

Поднятая на поверхность нефть первым делом проходит очистку. С помощью двух стоящих друг за другом сепараторов из жидкости выделяют газ, который поступает для дальнейшей обработки на компрессорную станцию. Смесь воды и нефти насосы нагревают в теплообменниках. Без этой процедуры не обойтись, так как добавленный для лучшего расслоения деэмульгатор бессилен при низкой температуре. В отстойниках, каждый объемом 200 м³, жидкость окончательно разделяется: воду используют повторно, а нефть через резервуары-хранилища по трубопроводу отправляют на перерабатывающий завод.

13

13

Первой поступающее на НПЗ сырье принимает электрообессоливающая установка. Здесь в нефть снова добавляют пресную воду, на сей раз — для растворения солей, вызывающих коррозию оборудования. Начальную грубую очистку будущее топливо прошло еще при добыче, параллельно с обезвоживанием. Электродегидраторы под высоким напряжением отделяют соленую воду от нефти. Для более эффективного расслоения применяют деэмульгаторы.

14

14

Атмосферно-вакуумная трубчатка (язык сломаешь!) отвечает за разделение нефти на фракции с разными температурами кипения. Используемый метод — многократное испарение и конденсация. Компоненты выделяются путем перегонки в атмосферных и вакуумных колоннах, а нагревают сырье в трубчатых печах. Мощность печей составляет 120 МВт (примерно половина загрузки средней по размерам гидроэлектростанции), а за циркуляцию жидкости отвечают 86 насосов.

16

16

Попутные нефтяные газы — побочный продукт добычи жидкого топлива. Отдельный блок установок окончательно осушает их и сжимает в компрессорах. В них же газ смешивают с маслом, необходимым для снижения температуры и уплотнения зазоров. Вполне закономерно, что потом летучее топливо вновь ждет очистка в сепараторе. Смазка уходит на очередной круг, а газы, охлажденные до 20–30 ºС, отправляются на завод по изготовлению пропан-бутана.

15

15

Среднестатистическая городская АЗС имеет емкости на 20 т топлива каждого вида. Ежедневные суммарные продажи — около 25 т. В период паводков топливо стараются закачать под крышку, чтобы обезопасить подземные резервуары от разрушения из-за давления воды и почвы. В двойных стенках прослойка из азота — для лучшей пожаробезопасности. Негерметичность емкости выявляют по изменению давления газа. Контролирующая электроника зафиксирует также наличие воды или изменение уровня топлива. Если топливораздаточная колонка расположена близко к хранилищу, то всасывающий насос установлен непосредственно в ней. В противном случае применяют напорный агрегат.

17

17

Отбор компонентов происходит в ректификационных колоннах. Внизу емкость с сырьем, по всей высоте — тарелки для сбора жидкости. Нагретая печью нефть начинает кипеть и испаряться. Поднимаясь, пар остывает и конденсируется на тарелках. У каждой фракции своя температурная граница, что и позволяет четко отделить их друг от друга. На практике весь процесс разделения происходит не в одной, а в нескольких колоннах.

18

18

Компоненты, выделяемые из сырой нефти (слева направо, начиная со второго, первый как раз сырая нефть): гудрон, тяжелый вакуумный газойль, легкий вакуумный газойль, тяжелое дизельное топливо, фракция 300–350º, летнее дизельное топливо, зимнее дизельное топливо, стабильный бензин и три его фракции, отличающиеся друг от друга пределом выкипания.

19

19

Дальнейший путь у каждого компонента свой: каталитический риформинг, депарафинизация, крекинг, коксование, изомеризация — процессы, нужные для полной очистки и повышения качества фракций. Затем пути моторного масла и топлива расходятся. Естественно, основная часть сырья идет на производство моторного топлива. Кстати, бензин состоит из восьми — десяти различных веществ, дизель — из трех.

20

20

Контроль топлива на заводе не отменяет аналогичной процедуры на АЗС. Пробы берут непосредственно при сливе топлива и позднее из резервуара. Лаборатория подтверждает качество и для контролирующих органов, и для самого оператора заправки. Замер уровня и объема происходит в автоматическом режиме. Есть и проверенный годами метод — с помощью линейки. Горючее практически прозрачное, поэтому планку покрывают химическим составом, который, реагируя с бензином или дизтопливом, приобретает красный цвет.

21

21

Канистры для масла изготавливают на месте. Так проще защитить продукт от подделок. Для этих же целей применяют двухкомпонентную крышку, вплавленную в пластик этикетку и индивидуальный номер на каждой таре, по которому определяют дату производства и бригаду. Канистры различаются цветом, который зависит от вязкости масла. При этом бракованный пластик, уходящий на вторичную переработку, сортировать не приходится: его пускают на средний слой, где оттенок не важен. Базовое масло — основа — рождается из российской нефти, а вот присадки к нему в основном импортные. Между сменами типа масла в трубопроводе проводят механическую очистку, чтобы выгнать остатки смазки из системы.

Смешивание компонентов для приготовления топлива доверено точной автоматике. Несмотря на отлаженный процесс и контролируемое качество каждой составляющей, финальные пробы берут регулярно. Готовое топливо поступает в товарные резервуары. Оттуда его забирают железнодорожные и автоцистерны, а часть перекачивают по трубам на многие сотни километров.

ИНТЕРЕСНЫЕ ФАКТЫ

— Первые следы нефтяных промыслов относят к шестому тысячелетию до н. э. Тогда нефть использовали в строительстве как связующий и изолирующий раствор.

— В 1846 году на меcторождении Биби-Эйбат (вблизи Баку) пробурили первую в мире нефтяную скважину. Добыча началась двумя годами позже.

— Температура воздуха в скважине поднимается в среднем на 3 ºС каждые 100 м. e На звание самой глубокой скважины претендуют три объекта, уходящие в глубину более чем на 12 км. Первой появилась Кольская сверхглубокая (12 262 м). В 2008 году ее переплюнула шахта в Катаре — 12 289 м. А с 2011-го первенствует скважина проекта «Сахалин-1» — 12 345 м.

— Подводные нефтехранилища, применяемые при добыче в море, не имеют дна. По сути, это колокола. Нефть удерживается в них благодаря меньшей, чем у воды, плотности.

— НПЗ производят не только различные сорта топлива и масел. Например, серу, получаемую в процессе очистки нефти, отгружают химическим предприятиям в гранулах или в виде серной кислоты.

— Первые стальные резервуары (цилиндрическая форма, диаметр более 3 м) для хранения нефти и других жидкостей сконструировал в конце XIX века известный русский инженер В.Г. Шухов. Основные принципы их построения используются по сей день.

— Первый российский нефтепровод Балаханы — Черный Город (Баку) построили в 1878 году. Он сделал ненужными перевозчиков нефти, которые ранее транспортировали ценный груз в бочках. Для защиты сооружения вдоль него установили караульные будки.

Ошибка в тексте? Выделите её мышкой! И нажмите: Ctrl + Enter

www.zr.ru

Как делают бензин и масло: дело – труба

Горючее, масла, смазки – всё получают из нефти. Автор проследил, как долго топливо и масло находятся в одной емкости и когда их пути расходятся. А начал с поиска места их рождения.

[​IMG]

Чтобы найти залежи «черного золота», сначала проводят сейсморазведку. Искусственно вызванные сейсмические волны уходят на несколько километров вглубь Земли, часть отражается, наталкиваясь на слои породы, часть преломляется и идет дальше.

[​IMG]

По поведению волн делают выводы о структуре недр. На разработанном ЛУКОЙЛом Уньвинском месторождении (под Пермью) для возбуждения волн используют взрывы. Территория в 223 км² поделена на квадраты 250×250 м. По продольным линиям бурят скважины для закладки зарядов, поперек прокладывают кабели с сейсмоприемниками, собирающими информацию, которая приходит из-под земли. Мощность каждого заряда, заложенного на глубину несколько метров, – около 400 г.

[​IMG]

Современные технологии позволяют вести работы без вреда для растений: компактные буровые установки буксируют снегоходами.

[​IMG]

В районе разведки проложено 750 таких «кос» с датчиками, длина каждой 300 м. Данные поступают в центр обработки, в итоге формируют трехмерную модель структуры почвы.

[​IMG]

Глубина залегания нефтенесущего пласта меньше, чем длина скважины. Если первый параметр составляет 1700–1900 м, то второй достигает 2500 м. Финальный отрезок, забой, идет горизонтально, вдоль слоя, богатого полезными ископаемыми. Толщина слоя всего несколько метров, и ствол шахты нужно вывести точно в него, пробурив перед этим более 2000 м! Угол наклона набирают постепенно: примерно с 14º на отметке 800 м до 60–70º к 2200 м. Его задают настройками на долоте бура. Сами трубы в стволе также скрепляют под углом. Длина каждой 9–11 м. После спуска в шахту ее прикручивают к предыдущей секции и цементируют по всей длине. Состав раствора зависит от характера породы, в которой останется труба.

[​IMG]

Никаких подземных озер с «черным золотом», разумеется, нет. Нефть находится в пористой породе, откуда ее вымывают водой под давлением. В добывающих скважинах трудятся мощные электроцентробежные насосы. Штанговые насосы («качалки»), с меньшей производительностью, используют для выкачивания остаточных запасов нефти из слоя. Из-за наклона шахт десяток скважин, занимающих площадь в пару сотен квадратных метров, качает нефть с территории во много раз большей. Такое объединение называют кустом.

[​IMG]

Нефтяные скважины прокладывают турбобуром. С винтовым, используемым для бытовых скважин, у него мало общего.

[​IMG]

Установленные на поверхности насосы под давлением подают в агрегат буровой раствор (его состав зависит от типа породы), который, попадая на лопатки, вращает турбину. На ее валу установлено долото (на маленьком фото), прогрызающее породу.

[​IMG]

Для большей мощности в бур встраивают многоступенчатые турбины, чтобы увеличить крутящий момент. Перемолотая порода подается наверх вместе с отработавшим буровым раствором.

[​IMG]

[​IMG]

На Уньвинском месторождении, далеко не самом крупном, 60 кустов. У каждого – групповая автоматическая замерная установка, которая контролирует поочередно добычу каждой скважины. А дальше нефтесодержащая жидкость уже единым потоком идет на станцию очистки.

[​IMG]

Нефть оставляет на стенках труб асфальтопарафиновые отложения. Для их ликвидации в скважинах используют лебедку Сулейманова. Ее устройство просто: трос опускает на заданную глубину скребок, после чего вытягивает его обратно. Такую механическую обработку повторяют до шести раз в сутки.

[​IMG]

Поднятая на поверхность нефть первым делом проходит очистку. С помощью двух стоящих друг за другом сепараторов из жидкости выделяют газ, который поступает для дальнейшей обработки на компрессорную станцию. Смесь воды и нефти насосы нагревают в теплообменниках. Без этой процедуры не обойтись, так как добавленный для лучшего расслоения деэмульгатор бессилен при низкой температуре. В отстойниках, каждый объемом 200 м³, жидкость окончательно разделяется: воду используют повторно, а нефть через резервуары-хранилища по трубопроводу отправляют на перерабатывающий завод.

[​IMG]

Первой поступающее на НПЗ сырье принимает электрообессоливающая установка. Здесь в нефть снова добавляют пресную воду, на сей раз – для растворения солей, вызывающих коррозию оборудования. Начальную грубую очистку будущее топливо прошло еще при добыче, параллельно с обезвоживанием. Электродегидраторы под высоким напряжением отделяют соленую воду от нефти. Для более эффективного расслоения применяют деэмульгаторы.

[​IMG]

Атмосферно-вакуумная трубчатка (язык сломаешь!) отвечает за разделение нефти на фракции с разными температурами кипения. Используемый метод – многократное испарение и конденсация. Компоненты выделяются путем перегонки в атмосферных и вакуумных колоннах, а нагревают сырье в трубчатых печах. Мощность печей составляет 120 МВт (примерно половина загрузки средней по размерам гидроэлектростанции), а за циркуляцию жидкости отвечают 86 насосов.

[​IMG]

Попутные нефтяные газы – побочный продукт добычи жидкого топлива. Отдельный блок установок окончательно осушает их и сжимает в компрессорах. В них же газ смешивают с маслом, необходимым для снижения температуры и уплотнения зазоров. Вполне закономерно, что потом летучее топливо вновь ждет очистка в сепараторе. Смазка уходит на очередной круг, а газы, охлажденные до 20–30 ºС, отправляются на завод по изготовлению пропан-бутана.

[​IMG]

Среднестатистическая городская АЗС имеет емкости на 20 т топлива каждого вида. Ежедневные суммарные продажи – около 25 т. В период паводков топливо стараются закачать под крышку, чтобы обезопасить подземные резервуары от разрушения из-за давления воды и почвы. В двойных стенках прослойка из азота – для лучшей пожаробезопасности. Негерметичность емкости выявляют по изменению давления газа. Контролирующая электроника зафиксирует также наличие воды или изменение уровня топлива. Если топливораздаточная колонка расположена близко к хранилищу, то всасывающий насос установлен непосредственно в ней. В противном случае применяют напорный агрегат.

[​IMG]

Отбор компонентов происходит в ректификационных колоннах. Внизу емкость с сырьем, по всей высоте – тарелки для сбора жидкости. Нагретая печью нефть начинает кипеть и испаряться. Поднимаясь, пар остывает и конденсируется на тарелках. У каждой фракции своя температурная граница, что и позволяет четко отделить их друг от друга. На практике весь процесс разделения происходит не в одной, а в нескольких колоннах.

[​IMG]

Компоненты, выделяемые из сырой нефти (слева направо, начиная со второго, первый как раз сырая нефть): гудрон, тяжелый вакуумный газойль, легкий вакуумный газойль, тяжелое дизельное топливо, фракция 300–350º, летнее дизельное топливо, зимнее дизельное топливо, стабильный бензин и три его фракции, отличающиеся друг от друга пределом выкипания.

[​IMG]

Дальнейший путь у каждого компонента свой: каталитический риформинг, депарафинизация, крекинг, коксование, изомеризация – процессы, нужные для полной очистки и повышения качества фракций. Затем пути моторного масла и топлива расходятся. Естественно, основная часть сырья идет на производство моторного топлива. Кстати, бензин состоит из восьми – десяти различных веществ, дизель – из трех.

[​IMG]

Контроль топлива на заводе не отменяет аналогичной процедуры на АЗС. Пробы берут непосредственно при сливе топлива и позднее из резервуара. Лаборатория подтверждает качество и для контролирующих органов, и для самого оператора заправки. Замер уровня и объема происходит в автоматическом режиме. Есть и проверенный годами метод – с помощью линейки. Горючее практически прозрачное, поэтому планку покрывают химическим составом, который, реагируя с бензином или дизтопливом, приобретает красный цвет.

[​IMG]

Канистры для масла изготавливают на месте. Так проще защитить продукт от подделок. Для этих же целей применяют двухкомпонентную крышку, вплавленную в пластик этикетку и индивидуальный номер на каждой таре, по которому определяют дату производства и бригаду. Канистры различаются цветом, который зависит от вязкости масла. При этом бракованный пластик, уходящий на вторичную переработку, сортировать не приходится: его пускают на средний слой, где оттенок не важен. Базовое масло – основа – рождается из российской нефти, а вот присадки к нему в основном импортные. Между сменами типа масла в трубопроводе проводят механическую очистку, чтобы выгнать остатки смазки из системы.

Смешивание компонентов для приготовления топлива доверено точной автоматике. Несмотря на отлаженный процесс и контролируемое качество каждой составляющей, финальные пробы берут регулярно. Готовое топливо поступает в товарные резервуары. Оттуда его забирают железнодорожные и автоцистерны, а часть перекачивают по трубам на многие сотни километров.

Интересные факты

- Первые следы нефтяных промыслов относят к шестому тысячелетию до н. э. Тогда нефть использовали в строительстве как связующий и изолирующий раствор.

- В 1846 году на меcторождении Биби-Эйбат (вблизи Баку) пробурили первую в мире нефтяную скважину. Добыча началась двумя годами позже.

- Температура воздуха в скважине поднимается в среднем на 3 ºС каждые 100 м. e На звание самой глубокой скважины претендуют три объекта, уходящие в глубину более чем на 12 км. Первой появилась Кольская сверхглубокая (12 262 м). В 2008 году ее переплюнула шахта в Катаре – 12 289 м. А с 2011-го первенствует скважина проекта «Сахалин-1» – 12 345 м.

- Подводные нефтехранилища, применяемые при добыче в море, не имеют дна. По сути, это колокола. Нефть удерживается в них благодаря меньшей, чем у воды, плотности.

- НПЗ производят не только различные сорта топлива и масел. Например, серу, получаемую в процессе очистки нефти, отгружают химическим предприятиям в гранулах или в виде серной кислоты.

- Первые стальные резервуары (цилиндрическая форма, диаметр более 3 м) для хранения нефти и других жидкостей сконструировал в конце XIX века известный русский инженер В.Г. Шухов. Основные принципы их построения используются по сей день.

- Первый российский нефтепровод Балаханы – Черный Город (Баку) построили в 1878 году. Он сделал ненужными перевозчиков нефти, которые ранее транспортировали ценный груз в бочках. Для защиты сооружения вдоль него установили караульные будки.

Кирилл Милешкин

http://www.zr.ru/content/articles/531511-kak_delajut_benzin_i_maslo_delo_truba/

 

www.audi-club.ru

Источники энергии – Нефтяные месторождения (Нефть)

10 10 2016      greenman       Пока нет комментариев  

Нефтяные месторождения (Нефть)

Нефть человечество знает давно. Еще древние египтяне употребляли нефть как средство для бальзамирования тел умерших. В древней Греции нефть также находила применение. Греки хорошо знали ее свойства и называли сырую нефть «сицилийским маслом». В нашей стране еще в VIII в. жители Апшеронского полуострова, не имея дров, использовали для отопления своих жилищ землю, пропитанную нефтью. Земля эта горела и спасала людей от холода. Арабский историк Истархи, живший в VIII в., свидетельствует, что с древних времен бакинцы вместо дров жгли землю, пропитанную нефтью. Нефть издавна вывозилась из Баку в качестве осветительного материала.

Как и многие другие источники органических веществ, нефть была известна многим древним народам. Раскопки на берегах Евфрата установили, что за 6000—4000 лет до нашей эры нефть применяли как топливо. Есть сведения, что у нас на Кавказе нефть использовалась 2000 лет тому назад.

Хотя нефть уже давно была знакома человеку, однако широко ее использование началось только со второй половины прошлого столетия. Особое значение нефть и ее продукты получили с развитием автомобильной промышленности.

Ни коксохимия, ни лесохимия, ни другие менее крупные источники органических веществ, не смогли, удовлетворить все возрастающую потребность человечества в органических веществах. Начиная с 20-х годов XX века, на первое место среди источников химического сырья вышли нефть и природные газы.

Нефть — маслоподобная жидкость, имеющая вероятно, органическое происхождение. Цвет ее обычно темный, но встречаются нефти светлых и светло-желтых, зеленовато-коричневых или красновато-коричневых оттенков. Запах нефти керосиновый, иногда со слабым или сильным сернистым «душком».

Теплотворная способность нефти

Теплотворная способность нефти очень высока —10 тыс. калорий на килограмм.

В этом отношении она выше антрацитов и к тому же еще сгорает без остатка. В химическом составе нефти основное место занимает сложная смесь углеводородов, причем углерода в нефти от 84 до 88%, а водорода — около 14%. Кроме того, в состав нефти входят также кислородные, сернистые, азотистые соединения и некоторые неорганические (минеральные) примеси. Нефти различных месторождений часто имеют и различный химический состав.

Геология нефти. Месторождения нефти встречаются во всех отложениях, начиная с кембрия, до третичных включительно. Нефть залегает в пористых осадочных породах морского происхождения — песках и песчаниках, часто изогнутых в складки, в форме свода. Встречается нефть и в известняках, где заполняет пустоты и трещины. Запасы нефти часто находятся под большим давлением газа, поэтому, если при бурении не принять предохранительных мер, может образоваться мощный нефтяной фонтан и ог-ромное количество нефти и газа безвозвратно потеряется. Открытый фонтан нефти считается катастрофой на нефтяном промысле.

Трудно найти такую отрасль народного хозяйства, где не находила бы применение нефть и продукты ее переработки. И действительно, сырая нефть служит источником энергии, тепла и света, сырьем для химической промышленности и т. д.

Благодаря очистке и переработке нефти, производится много различных продуктов. Нефть является источником получения бензина, газолина, керосина, мазута, различных смазочных масел, спирта, синтетического каучука, пластмасс и т. д.

Если брать общую территорию бывшего СССР, включая среднеазиатские республики, то на ней сконцентрировано до половины мировых запасов нефти. Большая часть этого запаса приходится на Россию.

В истории человечества бывало уже не раз, что одни полезные ископаемые «вырывались вперед», начинали обгонять другие ископаемые и буквально «завоевывали» весь мир. Так было в древности с медью, обогнавшей кремень и положившей начало бронзовому веку. Так было потом с железом, обогнавшим медь.

В наше время на первый план среди горючих ископаемых постепенно выдвигаются нефть и газ. Влияние нефти в современном мире огромно – это кровь промышленности, движущая сила большинства машин и механизмов. Но почему это происходит? Дело в том, что химическая промышленность и транспорт в последние годы стали нуждаться во многих продуктах, получаемых из нефти. Автомобили и самолеты немыслимы без бензина и керосина, а самый простой процесс для их получения — перегонка нефти. Разнообразные синтетические материалы очень выгодно изготовлять из нефти и газа. Однако своим успехом, нефть и газ обязаны не только постоянно растущему спросу. Очень важно и то, что добывать их проще, чем уголь.

Добыча нефти, бурение и разработка нефти

Главная машина для добычи нефти и газа — буровой станок. Первые буровые машины, появившиеся сотни лет назад, по существу, копировали рабочего с ломом. Только лом у них был потяжелее и по своей форме напоминал скорее долото. Он так и назывался — буровое долото. Подвешивали буровое долото на канате, который попеременно поднимали и опускали с помощью ворота.

Такие машины называются ударно-канатными. Они существуют во множестве и сейчас, только теперешние «долота» весят иной раз по несколько тонн и поднимают их не вручную, а с помощью мотора. Несмотря на это, ударно-канатные станки можно назвать уже вчерашним днем техники. Очень уж медленно пробивают они отверстие в камне, очень уж неудобны и неповоротливы, очень много энергии расходуют зря и медленно работают — ведь перед каждым ударом стальное «долото» надо тащить на канате вверх, потом бросать, потом опять тащить… Там, где нужно бурить очень глубокие скважины, станки с долотом и канатом вообще не годятся.

Гораздо быстрее оказался другой способ бурения — роторный, при котором скважина высверливается. Нефтяной «бурав» — это ажурная металлическая четырехногая вышка высотой с десятиэтажный дом, к вершине которой подвешена толстая стальная труба. Ее вращает устройство — ротор. На нижнем конце трубы — буровое долото. Это долото только по названию напоминает инструмент ударно-канатного станка, а на самом деле оно скорее похоже на сверло — только очень короткое и особо прочной конструкции. Буровой мастер включает мотор ротора, и долото начинает быстро врезаться в землю, высверливая скважину. По мере того как буровой инструмент уходит все глубже в землю, трубу удлиняют. Для того чтобы «стружки» — куски разрушенной земли — не заполняли пробуренную скважину, в нее насосом через трубу нагнетают глинистый раствор. Раствор промывает скважину, уносит из нее вверх по щели между трубой и стенкой скважины разрушенную глину, песчаник, известняк. Одновременно глинистый раствор как бы штукатурит стенки скважины, чтобы они не обрушились.

Но и у роторного бурения есть свой недостаток, вызывающий при глубоком бурении нефти проблемы. Чем глубже скважина, тем тяжелее работать мотору, тем медленнее идет бурение. Ведь одно дело вращать стальную трубу длиной в пять—десять метров, когда бурение скважины только начинается, и совсем другое — крутить колонну труб, в которой пятьдесят, сто, пятьсот метров, А когда глубина скважины достигает километра? А двух километров?

Насколько легче было бы мотору, если бы требовалось вращать только буровое долото!

Такая машина была построена впервые в мире советским инженером М. А. Капелюшниковым в 1923 г. На поверхности земли, на вышке, не было видно никакого ротора, и тем не менее буровая колонна быстро уходила вглубь гораздо быстрее, чем раньше. Все дело в том, что изобретатель поместил мотор не наверху, а внизу — рядом с буровым инструментом. Теперь всю свою мощность мотор расходовал только на вращение самого бура.

У этого необыкновенного станка и мотор был необыкновенный. Инженер Капелюшников заставил вращать бур ту самую воду, которая раньше только вымывала из скважины разрушенную породу. Теперь, прежде чем достигнуть дна скважины, накачиваемый насосом глинистый раствор вращал маленькую турбину, к которой прикреплен буровой инструмент.

Новый станок назвали турбобуром. Со временем его усовершенствовали. Теперь в скважину опускают множество турбин, насаженных на один вал. Понятно, что мощность такой «многотурбинной» буровой машины во много раз больше и бурение идет во много раз быстрее.

Другая замечательная буровая машина — электробур

Электробур, изобретенный А. П. Островским и Н. В. Александровым, пробурил первые нефтяные скважины в 1939 г. У этой машины колонна труб, на которой подвешен бур, тоже не вращается, работает только сам буровой инструмент. Но крутит его не водяная турбина, а электрический двигатель.

Двигатель электробура помещен в стальную «рубашку» — кожух, заполненный маслом. Масло все время находится под высоким давлением, поэтому окружающая вода не может проникнуть в двигатель. А чтобы мощный мотор мог поместиться в узкой нефтяной скважине, пришлось сделать его очень высоким, и двигатель получился похожим на столб: диаметр у него как у блюдца, а высота — б — 7 м, в два с лишним раза выше комнаты.

 

Для того чтобы бурить еще быстрее, нужно научиться разрушать породу на дне скважины без твердых инструментов. Даже если резцы долота сделаны из специального твердого сплава или алмазов, они довольно быстро тупятся, ломаются, и долото надо заменять новым, А чтобы заменить, надо вытащить бур на поверхность с большой глубины. Поэтому нередко на замену инструмента уходит гораздо больше времени, чем на само бурение.

На помощь буровикам пришли ракетчики. Еще в 50-х годах прошлого века была сконструирована горелка, работающая по принципу жидкостного реактивного двигателя. В камеру сгорания поступают керосин и кислород, а из сопел горелки со сверхзвуковой скоростью вырывается раскаленная до нескольких тысяч градусов струя газов. Эта струя мгновенно нагревает дно скважины, порода растрескивается на небольшие чешуйки, которые уносятся на поверхность теми же газами и паром, образующимся при охлаждении горелки водой.

Существуют и другие, совсем новые способы разрушения твердых (скальных, как говорят в технике) пород. Например, предложено использовать для этого переменный ток высокой частоты. Буровых установок, работающих на этом принципе, еще нет. Но уже существуют высокочастотные установки, с помощью которых с успехом раскалывают каменные глыбы.

Есть и еще одна возможность обойтись без какого-либо механического инструмента. Это способ «бурения» глубоких скважин с помощью маленьких порций взрывчатки, которая, падая на дно скважины, разрушает его.

Бурение — основная работа при добыче запасов нефти и газа. В отличие, скажем, от угля или железной руды, сырую нефть и газ не нужно отделять от окружающего массива машинами или взрывчаткой, не нужно выдавать на-гора конвейером или в вагонетках. Как только скважина достигла нефтеносного пласта, нефть, сжатая в недрах давлением газов и подземных вод, устремляется вверх с огромной силой. Остается только вовремя поймать эти фонтаны в трубы.

Но через некоторое время давление в недрах уменьшается, иногда довольно скоро, и ос-тавшаяся там нефть перестает течь вверх. Тогда нефтяники через специально пробуренные отверстия накачивают под землю воду. Вода давит на нефть и выдавливает ее на поверхность по вновь ожившей скважине. Но скоро и вода уже не может помочь. Наступает время применить главный способ разработки запасов: в скважину опускают насос и начинают выкачивать нефть. С помощью насосов добывают большую часть нефти.

Транспортировка и хранение нефти

Нефть и газ удобно и выгодно не только добывать; транспортировка этих полезных ископаемых на нефтеперерабатывающие и химические заводы, электростанции, в города тоже очень удобна. Перевозка сырой нефти обычно осуществляется цистернами — по железным дорогам и автомобилями, а по морям и океанам — в нефтеналивных судах танкерах. Но во многих случаях нефть не нуждается в таком дорогом транспорте. Она может течь на любые расстояния по трубам.

Протяженность нефтепроводов и газопроводов — магистралей из стальных труб, уложенных неглубоко в земле,— достигает десятков тысяч километров.

А вот хранение нефти и газа — сложнее, нежели чем угля и руды.

Для хранения нефти и получаемых из нее нефтепродуктов, например бензина, нужно строить специальные металлические резервуары. Они похожи на гигантские консервные банки. Стенки нефтехранилищ окрашивают серебристой алюминиевой краской, хорошо отражающей солнечные лучи. При нагреве нефть имеет свойство быстро испаряться, теряя самые ценные легкие части.

Чтобы нефть испарялась как можно меньше, применяют и другие приспособления, например делают крышу нефтехранилища не обычной, а плавающей. Если из резервуара выкачают часть нефти и ее уровень в резервуаре понизится, то вслед за нефтью опустится и крыша. Плотно прилегая к поверхности, такая крыша препятствует испарению нефти.

Химический состав нефти

Нефть — это смесь углеводородов с самыми разнообразными цепочками атомов углерода.

Встречаются и короткие цепи, и длинные, и нормальные, и разветвленные, и замкнутые в кольца, и многокольчатые. Кроме углеводородов, в нефти содержатся в небольшом количестве кислородные и сернистые соединения и совсем немного азотистых.

Происхождение нефти

Нефть возникла на Земле в прошлые геологические эпохи, предположительно, в результате разложения грандиозных скоплений растительных и животных остатков, особенно морского планктона. В ходе геологических процессов нефть видоизменялась, перемещалась из одних слоев в другие и, наконец, образовала известные нам крупные месторождения: на Кавказе, в Поволжье и Приуралье, в Иране, Месопотамии и Ираке, в Калифорнии и в Техасе, в Венесуэле, в Сахаре и в других районах земного шара.

Перегонка сырой нефти в бензин, керосин, мазут и масла

Промышленная добыча нефти началась, однако, гораздо позже — только с середины XIX в., когда стали применять бурение скважин. В те времена сырая нефть перерабатывалась в основном на осветительные (керосин) и смазочные масла. Потом ее стали употреблять как топливо для паровых котлов, главным образом пароходных и позже паровозных (мазут). С появлением двигателей внутреннего сгорания, изобретенных Дизелем, продукты перегонки нефти — керосин и соляровые масла (а для тихоходных двигателей также и более тяжелые масла) — нашли широкое применение в качестве дизельного топлива. Все это вызвало быстрое развитие добычи и переработки нефти. Наиболее простой метод переработки нефти — прямая перегонка сырой нефти. Этот метод заключается в перегонке сырой нефти при нагревании в закрытых котлах или трубчатках с отводными трубами, соединенными с холодильниками. Сначала отгоняются наиболее легкокипящие погоны (бензины, лигроин), потом более тяжелый керосин. Бензины состоят из углеводородов с пятью — десятью атомами углерода в молекуле, а керосиновые погоны — из углеводородов с десятью — пятнадцатью атомами углерода. Остаток от перегонки — мазут — густая черная жидкость. Он употребляется как топливо или подвергается новой перегонке, чтобы выделить смазочные масла: легкие — соляровые, более тяжелые — веретенные и машинные и, наконец, тяжелые — цилиндровые.

Переработка нефти, применение нефти и ее свойства

В начале нашего века произошли коренные изменения в переработке нефти. Быстрое распространение карбюраторных бензиновых двигателей внутреннего сгорания с искровым зажиганием для автомобилей (а позже в авиации) потребовало очень много бензина. Это привело прежде всего к усовершенствованию добычи нефти, так как при старом открытом способе много легкокипящих фракций испарялось на воздухе. Однако этого было недостаточно. При прямой перегонке сырой нефти, получалось сравнительно мало бензиновых фракций, и они не могли удовлетворить все возрастающий спрос. Особенно остро почувствовалась нехватка бензина в годы первой мировой войны. Тогда в промышленность был введен крекинг-процесс — разложение углеводородов нефти под влиянием высокой температуры. При нагреве до 500—600° углеводородные цепочки разрываются и образуются осколки с меньшим числом атомов углерода в молекуле. Промышленное освоение крекинг-процесса переработки нефти сразу повысило ресурсы бензина. Однако не во всех случаях качество бензинов термического крекинга было удовлетворительным. Особенно оно не удовлетворяло авиацию.

Русский химик Н. Д. Зелинский предложил усовершенствовать крекинг процесс перегонки сырой нефти с помощью ускорителей процесса — катализаторов. Он применил в качестве катализатора хлористый алюминий. Еще лучшие результаты дало применение алюмосиликатного катализатора, предложенного французскими инженерами. Этот процесс давал высококачественный бензин, пригодный для авиационных двигателей.

Однако жизнь шла вперед. От бензиновых двигателей внутреннего сгорания требовалась все большая быстроходность, все большая мощность, при постоянно уменьшающихся размерах и весе, приходящихся на единицу мощности. Этого удалось достичь, повышая степень сжатия топлива в цилиндрах двигателя. Однако здесь появился предел, связанный с детонацией топлива. В момент сильного и быстрого сжатия паровоздушная смесь преждевременно взрывалась, и это приводило к стуку в двигателе и потере мощно-сти. Борьба с детонацией стала на долгий период главной задачей улучшения методов нефтепереработки. Оказалось, что различные углеводороды, содержащиеся в бензинах, детонируют с различной легкостью. Хуже всего в этом отношении оказались углеводороды с нормальной цепочкой атомов углерода. Углеводороды с сильно разветвленными цепочками атомов, а также ароматические детонировали труднее.

Способность бензинов противостоять детонации характеризуют так называемым окта-новым числом: чем оно выше, тем лучше. Значит, и нефть нужно перерабатывать так, чтобы получать бензины с возможно большими октановыми числами. В этом отношении каталитический крекинг гораздо лучше простого термического. Появились новые процессы переработки нефти — «риформинг», «платформинг». Особое значение в них получили реакции ароматизации нефтяных углеводородов, открытые и разработанные советскими химиками. Промышленность стала даже на путь синтеза углеводородов с разветвленной цепью (изооктана и триптана), чтобы их прибавлять к бензинам и повышать таким образом антидетонационные свойства. Особенного успеха удалось достичь в применении специальных добавок к топливу — так называемых антидетонаторов. Добавленные в небольшом количестве к бензину, они значительно повышают его октановое число. Это тетраэтилсвинец (сокращенно ТЭС). Этилированный бензин с этим антидетонатором очень ядовит. Позже был найден и лучший антидетонатор, чем ТЭС. Это вещество со сложным названием — циклопентадиенилтрикарбонил марганца, или ЦТМ. Как видно из названия, это органическое вещество содержит марганец.

Казалось, переработка сырой нефти решила все проблемы, поставленные перед ней автомобильными и авиационными конструкторами. Но жизнь опять пошла вперед. На смену двигателям внутреннего сгорания пришли реактивные и ракетные двигатели. Оказалось, что здесь не нужны высокие октановые числа. Наоборот, лучшее топливо — это углеводороды с прямыми малоразветвленными цепочками атомов углерода или кольчатые. Все наоборот! И совсем не бензиновые фракции, а керосиновые и соляровые. И снова поиск, снова открытия, снова изменения переработки нефти.

И это еще не все! До сих пор речь шла о применении нефтепродуктов в качестве топлива. Менялись типы двигателей: от паровых к дизелям, к бензиновым моторам, потом к реактивным двигателям. Но оставалось в принципе то, что от нефтяных углеводородов требовалась их теплотворная способность. Только тепло, образующееся при сгорании топлива!

Использование нефти

А для химика-органика сжигание нефтяных углеводородов — непростительное расточительство. Ведь эти углеводороды нужно использовать для химического синтеза! Из них можно сделать так много ценных химических продуктов! И нефтехимический синтез выступил мощным конкурентом транспорта в потреблении нефти. Прежде всего, пошли в дело нефтяные газы, состоящие из углеводородов с маленькими цепочками атомов углерода — от одного до пяти. Из этилена СН2 = СН2 можно делать этиловый спирт, а из него — синтетический каучук (СК). Из этилена же получается прекрасный широко известный полимер — полиэтилен. Из пропилена СН3СН = СН2 можно делать изопропиловый спирт и ацетон; пропилен нужен для производства фенола, наконец, из него можно делать полипропилен — полимер, дающий новый тип синтетического волокна. А в последнее время научились из пропилена делать акрилонитрил (НАК) — сырье для производства синтетической шерсти. Другие нефтяные газы тоже находят важное применение в нефтехимическом синтезе. Значит, переработку и использование нефти нужно вести иначе. Нужно получать как можно больше газов, особенно таких, молекулы которых содержат двойные связи между атомами углерода.

Между нефтью — топливом и нефтью — химическим сырьем началась напряженная борьба. Конечно, в настоящее и ближайшее время нефть будут использовать, главным образом, как топливо. Однако доля нефти, расходуемая на химическую переработку, непрерывно возрастает.

А совсем недавно появился еще один возможный вариант использования нефти. Это микробиологическая переработка нефти на белки. Нашлись бактерии, которые хорошо живут на нефти, потребляя ее в пищу. Нефть исчезает, бактерии растут. Постепенно (и не так уж медленно) исчезает значительная часть нефти, и вместо нее образуется масса клеток бактерий. Это в основном белок. И по всем данным — хороший кормовой белок. Не изменит ли он снова баланс путей переработки нефти? Не изменит ли он структуру сельского хозяйства?

До сих пор шла речь о газах нефтепереработки. Однако есть и природный газ, образующий громадные скопления в толще земли. Природный газ в основном состоит из метана СН4. Он добывается в громадных количествах и используется в качестве горючего для промышленных и бытовых целей. Вместе с нефтяными газами, сопутствующими нефти, и газами нефтепереработки природный газ является важным источником для синтеза разнообразных органических веществ.

Просто о сложном – Нефтяные месторождения (Нефть)

  • Галерея изображений, картинки, фотографии.
  • Нефтяные месторождения (Нефть) как источники энергии – основы, возможности, перспективы, развитие.
  • Интересные факты, полезная информация.
  • Зеленые новости – Нефтяные месторождения (Нефть) как источники энергии.
  • Ссылки на материалы и источники – Нефтяные месторождения (Нефть).

greensource.ru

Способ теплоизоляции устьевой зоны добывающей скважины в многолетнемерзлых породах

Изобретение относится к эксплуатации добывающих скважин в криолитозоне и предназначено для сохранения грунта вокруг устьевой зоны скважины в мерзлом состоянии в течение всего срока ее эксплуатации. Техническим результатом изобретения является сохранение устойчивости скважины, достижение максимальной жесткости конструкции и обеспечение надежности закрепления ствола в приустьевой зоне. Для этого устанавливают пакерующий элемент на нижней границе верхнего участка теплоизолированной насосно-компрессорной трубы (НКТ). Циркуляционную трубку (ЦТ), выполняющую функцию теплообменного контура, с дизельным топливом (ДТ) в качестве теплоносителя и последующей теплоотдачей в атмосферу, соединяют по всей длине с верхним участком НКТ. Их спуск в скважину и подвеску на устье проводят со смещением оси НКТ относительно оси скважины. Верхний конец ЦТ в летний период соединяют с нагнетательной линией теплообменной установки, в зимний период - с нагнетательной линией холодильной установки. Осуществляют принудительную циркуляцию ДТ в верхнем участке эксплуатационной колонны через ЦТ с последующим подъемом по кольцевому пространству. Приведены математические формулы расчета глубины установки пакерующего элемента, диаметра ЦТ, величины смещения оси НКТ и расхода ДТ. 1 ил.

 

Изобретение относится к области эксплуатации добывающих скважин в криолитозоне и предназначено для сохранения грунта вокруг устьевой зоны скважины в мерзлом состоянии в течение всего срока ее эксплуатации.

Анализ существующего уровня показал следующее:

известен способ теплоизоляции устьевой зоны добывающей скважины в многолетнемерзлых породах, состоящий из охлаждения теплоносителя (хладоагента), поступающего через устье, в специальной емкости и последующей закачки его в дополнительную колонну (см. а.с. №440483 от 21.04.72 г. по кл. Е 21 В 43/00, опубл. в ОБ №31, 1974 г., столбец 2 и 3). При этом охлажденный теплоноситель из дополнительной колонны поступает в кольцевое пространство между кондуктором и эксплуатационной колонной. При эксплуатации скважины через насосно-компрессорные трубы (НКТ) терморегулирование осуществляется постоянной прокачкой теплоносителя через дополнительную колонну и кольцевое пространство между технической и эксплуатационной колоннами.

Недостатком указанного способа является отсутствие устойчивости скважин, а также минимальная жесткость конструкции и ненадежность закрепления ствола в приустьевой зоне. Отсутствие теплоизоляции НКТ или эксплуатационной колонны способствует применению значительных подач насоса и интенсификации теплообмена между добываемым флюидом и циркулирующим теплоносителем, что приводит к протаиванию многолетне-мерзлых пород (ММП). Помимо этого переохлаждение добываемого флюида может привести к образованию парафинистых или гидратных пробок в НКТ, что снизит дебит скважины. Указанный способ не применим для пробуренных и зацементированных скважин.

В качестве прототипа взят способ теплоизоляции устьевой зоны добывающей скважины в ММП, включающий спуск теплоизолированной в верхнем участке НКТ, установку параллельно оси скважины трубчатых элементов теплообменного контура с дизельным топливом в качестве теплоносителя с последующей теплоотдачей в атмосферу (см. патент РФ №2127356 от 16.02.98 г. по кл. Е 21 В 36/00, опубл. в ОБ №7, 1999 г.).

Недостатком указанного способа является слабая устойчивость скважин, недостаточная жесткость конструкции и не совсем надежное закрепление ствола в приустьевой зоне. Это обусловлено целым рядом причин:

- невозможность дистанционного управления термостабилизаторами;

- отклонение температуры воздуха от среднемесячной снижают эффективность применения способа, т.к. свободная конвекция и теплобмен в системе термостабилизатор - ММП не будут оптимальными;

- свободная конвекция в термостабилизаторах большой длины менее эффективна с точки зрения охлаждения ММП, чем вынужденная;

- термостабилизаторы расположены на периферии контура скважины, при этом лишь часть теплового потока, поглощаемого ими, идет от скважины, остальная - от ММП, что снижает эффективность столба и вынуждает использовать большое количество термостабилизаторов;

- невозможность высокоэффективного охлаждения в летний период приводит к протаиванию грунта;

- невозможность использования способа в скважинах, уже пробуренных и зацементированных;

- необходимость бурения под направление долотом со значительным диаметром, т.к. направление покрывается теплоизоляцией, и в цементный камень устанавливаются термостабилизаторы, что приводит к перерасходу тампонажных материалов;

- необходимость применения сложных технических средств при регулярной замене термостабилизаторов большой длины, близко расположенных к устьевому оборудованию.

Технический результат, который может быть получен при осуществлении предлагаемого изобретения, сводится к следующему:

сохраняется устойчивость скважины, достигается максимальная жесткость конструкции, обеспечивается надежность закрепления ствола в приустьевой зоне.

Технический результат достигается с помощью отдельных операций известного способа: спуск теплоизолированной в верхнем участке НКТ, установка вертикальных трубчатых элементов теплообменного контура с дизельным топливом в качестве теплоносителя с последующей теплоотдачей в атмосферу. При этом заявляются обладающие новизной следующие операции предлагаемой технологии:

устанавливают пакерующий элемент на нижней границе верхнего участка теплоизолированной НКТ. Глубину спуска последней определяют по формуле

где l - глубина нижней границы верхнего участка теплоизолированной НКТ, м;

T - продолжительность эксплуатационного периода скважины, лет;

К - коэффициент льдистости в интервале многолетнемерзлых пород, %;

tф - температура добываемого флюида, ° С;

tММП - температура ММП, ° С.

В качестве трубчатых элементов теплообменного контура используют циркуляционную трубку, диаметр которой рассчитывают по формуле

где Дтр - наружный диаметр циркуляционной трубки, мм;

Дэк - внутренний диаметр эксплуатационной колонны, мм;

Дннкт - наружный диаметр теплоизолированной НКТ, мм;

ω - зазор между наружным диаметром теплоизолированной НКТ и наружным диаметром циркуляционной трубки, мм;

δ - зазор, необходимый для перехода в эксплуатационную колонну теплоизолированной НКТ и циркуляционной трубки, мм.

До спуска в скважину циркуляционную трубку соединяют по всей длине с верхним участком теплоизолированной НКТ. Спуск в скважину и подвеску на устье проводят со смещением оси НКТ относительно оси скважины на величину, определяемую по формуле

где Е - расстояние между осью скважины и осью теплоизолированной НКТ, мм.

Верхний конец циркуляционной трубки в летний период соединяют с нагнетательной линией теплообменной установки, в зимний период - с нагнетательной линией холодильной установки. В период эксплуатации скважины осуществляют принудительную циркуляцию дизельного топлива в верхней части эксплуатационной колонны через циркуляционную трубку с последующим подъемом по кольцевому пространству, обеспечивая расход дизельного топлива, определяемый по формуле

где Q - расход дизельного топлива, м/с;

q - тепловая мощность, передаваемая теплоизолированной НКТ дизельному топливу, Вт, рассчитываемая по формуле

где tcp - средняя температура дизельного топлива в кольцевом пространстве, ° С;

α ф - коэффициент теплоотдачи добываемого флюида, ;

ДВНКТ - внутренний диаметр НКТ, мм;

λ ст - коэффициент теплопроводности стали НКТ, ;

Днкт - наружный диаметр НКТ, мм;

λ из - коэффициент теплопроводности теплоизолированного материала, ;

α ДТ - коэффициент теплоотдачи дизельного топлива, ;

ρ - плотность дизельного топлива, кг/м3;

с - удельная теплоемкость дизельного топлива, ;

tОДТ - температура, до которой охлаждается дизельное топливо на поверхности, ° С.

На чертеже представлена принципиальная схема оборудования устья добывающей скважины в ММП, где:

1. Переходная катушка.

2. Сбрасывающая линия.

3. Нагнетательная линия.

4. Емкость для вышедшего из скважины дизельного топлива.

5. Охлаждающее устройство (в летний период - рефрижераторная установка, в зимний - теплообменник).

6. Плунжерный насос с регулируемой подачей.

7. Приводной электродвигатель.

8. Пакерующее устройство.

9. Теплоизолированная колонна НКТ.

10. Нагнетательная трубка.

Основной причиной возникновения осложнений при строительстве и эксплуатации газовых скважин в криолитозоне является несоответствие уровня тепловых нагрузок энергетическому потенциалу саморегуляции ММП.

Как показывает практика, из-за интенсивного оттаивания высокольдистых ММП на устье скважин образуются воронки, достигающие 5-8 метров в диаметре и видимой с поверхности глубиной до 12 м. Выявлено около двадцати скважин на Бованенковском ГКМ до глубин 40-70 м, не имеющие опоры на окружающие породы, контакта с ними из-за наличия провалов за колоннами. Многочисленные расчеты показывают, что критическая длина сохранения устойчивости конструкции скважин колеблется в интервале 20-60 м. В таких условиях наблюдаются наклон фонтанной арматуры, ее перекос и деформация отводящих струн в результате потери продольной устойчивости конструкцией скважины. Засыпка образовавшихся воронок требует значительных материальных затрат, однако, даже это не останавливает формирование воронок.

Решение проблемы заключается в комплексе технологических мероприятий, направленных на сохранение устойчивости верхних интервалов ММП путем создания и дальнейшего поддержания в верхней части обсадной колонны температуры среды ниже температуры фазового перехода льда в воду. Температура фазового перехода зависит от минерального состава воды, входящей в ММП, и колеблется в интервале (-0,2)-(-3,5)° С.

Устойчивость того или иного участка ММП к тепловым воздействиям при сооружении скважин определяется динамическим равновесием состояния ММП в естественных условиях. Под условиями понимаются такие показатели, как температура ММП по всему интервалу их распространения, характер распределения различных генетических типов подземного льда и суммарная объемная льдистость, засоленность, относительная осадка при оттаивании и многие другие.

Очевидно, что основные из этих показателей должны входить в эмпирическую формулу для определения длины интервала применения данного способа, сохраняющего устойчивость верхнего интервала скважины весь срок эксплуатации.

Принудительное охлаждение верхнего интервала эксплуатационной колонны без отделения его от нижнего интервала не приведет к достижению поставленного технического результата, поэтому на границе верхнего и нижнего интервалов необходимо устанавливать пакерующее устройство, препятствующее конвективному тепломассообмену между верхним интервалом, заполненным циркулирующим дизельным топливом, имеющим в кольцевом пространстве среднюю температуру, равную (-3)° С, и нижним интервалом, заполненным буровым раствором, равную температуре добываемого газа +30° С.

Для доставки охлажденного дизельного топлива к нижней границе верхнего интервала служит циркуляционная трубка, жестко присоединенная на поверхности параллельно НКТ посредством хомутов. При этом для значительного снижения теплового потока, передаваемого от добываемого газа циркулирующему дизельному топливу через стенки НКТ, последние покрываются слоем теплоизоляции типа пенополистиролов толщиной 10 мм. Такого типа изоляция имеет коэффициент теплопроводности .

Таким образом, в скважину спускается и подвешивается со смещением комбинированная колонна длиной 73 м, состоящая из теплоизолированной НКТ и циркуляционной трубки. Смещение необходимо для облегчения спуска и возможного извлечения комбинированной колонны из скважины, а также для образования линейно-симметричного сечения верхнего интервала скважины для облегчения теплоотдачи и исключения локальных повышений температуры в какой-либо точке интервала.

Процесс теплообмена в скважине при циркуляции дизельного топлива происходит следующим образом. Холодное дизельное топливо подается в циркуляционную трубку, пройдя которую, выходит в кольцевое пространство выше пакерующего элемента и поднимается по нему к устью. Источником тепла в скважине является добываемый газ. Двигаясь по НКТ, он отдает часть своей тепловой энергии внутренней поверхности НКТ посредством вынужденной конвекции. Далее молекулярной теплопроводностью тепловой поток переносится через материал труб и теплоизоляцию и опять же молекулярной конвекцией дизельному топливу, находящемуся в кольцевом пространстве. В результате чего последнее нагревается с -7 до +1° С, обеспечивая среднюю температуру в верхнем участке добывающей скважины tcp=(-3)° C. Поднявшись до устья, нагретое дизельное топливо поступает в сбрасывающую линию, которая доставляет его в летний период в рефрижераторную установку типа “Термокинг”, охлаждующую дизельное топливо по принципу теплового насоса до начальной температуры (-7° С), после чего плунжерный насос типа ПЦН с регулируемой подачей 0,5 до 1 м3/час снова закачивает холодное дизельное топливо по циркуляционной трубке в скважину, а в зимний период охлаждение дизельного топлива происходит в теплообменнике с отдачей тепла окружающему холодному воздуху [tокруж.среды(-20)-(-30)° С]. Таким образом, описанная вынужденная циркуляция поддерживает заданную среднюю температуру дизельного топлива в верхней части эксплуатационной колонны, сохраняя тем самым тепловой баланс в системе скважина - ММП.

Из вышеизложенного следует, что на величину tср можно воздействовать двумя путями: изменять tОДТ - температуру, до которой дизельное топливо охлаждается на поверхности, или варьировать подачу насоса.

К примеру, для уменьшения tср необходимо уменьшить tОДТ либо увеличить подачу насоса. При этом первый способ предпочтительнее, так как увеличение подачи насоса вызовет рост скорости дизельного топлива в кольцевом пространстве и, как следствие, увеличение коэффициента конвективной теплопередачи и возрастание, хотя и незначительное, тепловой мощности, выделяемой в кольцевом пространстве. Поэтому целесообразнее задаваться tОДТ -(-7° С) и через него определять минимальную подачу насоса, при которой в верхнем интервале скважины установится температура (-3)°C. Минимальную расчетную подачу определяют из следующих соображений. Для сохранения теплового баланса в системе скважина - ММП вся тепловая мощность, выделяемая верхним интервалом теплоизолированной колонны НКТ, должна идти на нагрев дизельного топлива, поступающего в кольцевое пространство в единицу времени. При этом порция дизельного топлива нагревается на величину, равную удвоенной разности начальной температуры дизельного топлива и средней температуры в кольцевом пространстве, т.е. от (-7) до +1° С. Из равенства этих тепловых энергий и определяется минимальная подача плунжерного насоса.

Более подробно сущность заявленного способа поясняется следующим примером.

На Бованенковском ГКМ при подготовке скважины к эксплуатации в 168-мм колонну с толщиной стенки 12 мм предполагается спустить 89-мм колонну НКТ, покрытую снаружи слоем пенополистирола толщиной 10 мм.

Толщина стенки НКТ 6,5 мм. Скважину предполагается принудительно охлаждать арктическим дизельным топливом с плотностью 894 кг/м. Циркуляцию будут осуществлять плунжерным насосом типа ПЦН с регулируемой подачей по паспортным данным в пределах 0,5-1,0 м3/час. Исходные данные, используемые в расчетах:

Диаметры:

- внутренний эксплуатационной колонны. Док мм 144

- внутренний НКТ, Двн., мм 76

- наружный НКТ, Днкт, мм 89

- наружный НКТ с теплоизоляцией, Д, мм 109

Коэффициент теплопроводности среднеуглеродистой стали НКТ по ГОСТ 633-80, λ ст, , 32

Коэффициент теплоизоляции:

- пенополистирола, λ из, 0,04

- дизельного топлива, λ от, 0,5

Температура:

- добываемого флюида, tф, ° С; 30

- близлежащих ММП, tММП, ° С (-5)

охлаждения дизельного топлива на поверхности, tОДТ, ° С; (-7)

(принимается)

- средняя в кольцевом зазоре (должна быть ниже температуры начала замерзания воды ММП), tсp, ° C (-3)

Время эксплуатации скважины Т, лет 20

Коэффициент льдистости верхних слоев ММП (по данным геологических изысканий), k, % 40

Зазоры:

δ , мм 5

ω , мм 3

Определяют глубину нижней границы верхнего участка теплоизолированной НКТ или глубину установки пакерующего элемента

определяют диаметр циркуляционной трубки

Определяют смещение оси НКТ относительно скважины оси скважины

.

Стальная циркуляционная трубка диаметром 22 мм присоединяется жестко к теплоизолированной колонне НКТ посредством хомутов, представляющих собой металлические пластины с двумя полукруглыми пазами под НКТ и циркуляционную трубку соответственно. Такую комбинированную колонну спускают в скважину со смещением и подвешивают также со смещением, равным 12,5 мм в переходной катушке при помощи специально изготовленного посадочного конуса.

Для определения подачи насоса вычисляют тепловую мощность, выделяющуюся в скважине, однако, прежде из критериальных зависимостей находят коэффициенты теплоотдачи α Ф и α ДТ.

Так как дебит скважины значительно больше производительности насоса, то для упрощения расчетов при определении величины q принимаем допущение α Ф→∞. При определении α ДТ сначала вычислим коэффициент теплоотдачи α

- для круглой трубы, а потом уточним его для кольцевого пространства. Коэффициент теплоотдачи α вычислим при помощи критериального уравнения

где Nи - критерий Нуссельта, определяемый по формуле работы (см. Кутателадзе С.С. Теплопередача и гидродинамическое сопротивление: Справочное пособие. - M.: Энергоатомиздат, 1990, с.115-117)

где Рr - критерий Прандтля, определяемый по формуле

Re - критерий Рейнольдса, определяемый по формуле

где V - скорость течения дизельного топлива,

в первом приближении принимаем, что V=0,03 м/с.

ξ - коэффициент гидродинамического сопротивления, который определяется из формулы А=ξ · Re, по таблице (см. таблицу в источнике Ганджумян Р.А., Калинин А.Г., Никитин Б.А. Инженерные расчеты при бурении глубоких скважин - М.: Недра, 2000).

При

отсюда

Так как рассчитано для круглой трубы, его нужно уточнить для кольцевого пространства (см. Кутателадзе С.С. Теплопередача и гидродинамическое сопротивление: Справочное пособие. - М.: Энергоатомиздат, 1990, с.119) по формуле

Определяем q

Величина соответствует паспортным данным насоса ПЦН.

Проверим правильность принятия скорости течения дизельного топлива в кольцевом канале при определении критерия Рейнольдса, принятого в первом приближении 0,03 м/с.

Скорость течения дизельного топлива в кольцевом канале

где - площадь сечения кольцевого канала.

Это значение близко ранее принятому, поэтому пересчет не обязателен.

Анализ изобрететельского уровня показал следующее: известен способ теплоизоляции нагнетательной скважины, по которому после установки в обсаженной скважине НКТ с пакером между ней и обсадной колонной устанавливают разделительную трубу, имеющую входную и выходную арматуру на устье скважины, а после подачи теплоносителя в НКТ через кольцевые каналы, образованные разделительной трубой, прокачивают теплоизолирующий агент (см. патент РФ №2120540 от 26.04.96 г. по кл. Е 21 В 36/00, опубл. в ОБ №29, 1998 г.). Известно заполнение дизельным топливом в качестве теплоносителя внутренней и внешней кольцевых полостей, образованных наружной и внутренней трубами, установленными концентрично (см. патент РФ №1767162 от 13.08.90 г. по кл. Е 21 B 36/00, опубл. в ОБ №37, 1992 г.), известна сложная система циркуляции теплоносителя (хладоагента) в скважине (см. патент РФ №1776299 от 02.04.91 г. по кл. Е 21 В 43/00, 36/00, опубл. в ОБ №42, 1992 г.). На основании вышеизложенного нами не выявлены технические решения, имеющие в своей основе признаки, совпадающие со всеми отличительными признаками заявленного технического решения. Техническое решение явным образом не следует из уровня техники, т.е. соответствует условию изобретательского уровня.

Таким образом, заявляемое техническое решение соответствует критерию патентоспособности.

Способ теплоизоляции устьевой зоны добывающей скважины в многолетнемерзлых породах, включающий спуск теплоизолированной в верхнем участке насосно-компрессорной трубы, установку вертикальных трубчатых элементов теплообменного контура с дизельным топливом в качестве теплоносителя с последующей теплоотдачей в атмосферу, отличающийся тем, что устанавливают пакерующий элемент на нижней границе верхнего участка теплоизолированной насосно-компрессорной трубы, глубину спуска которой определяют по формуле

где - глубина нижней границы верхнего участка теплоизолированной насосно-компрессорной трубы, м;

T - продолжительность эксплуатационного периода скважины, лет;

К - коэффициент льдистости в интервале многолетнемерзлых пород, %;

tф - температура добываемого флюида, °С;

tММП - температура многолетнемерзлых пород, °С,

а в качестве вертикальных трубчатых элементов теплообменного контура используют циркуляционную трубку, диаметр которой рассчитывают по формуле

где ДТР - наружный диаметр циркуляционной трубки, мм;

ДЭК - внутренний диаметр эксплуатационной колонны, мм;

ДННКТ - наружный диаметр теплоизолированной насосно-компрессорной трубы, мм;

ω - зазор между наружным диаметром теплоизолированной насосно-компрессорной трубы и наружным диаметром циркуляционной трубки, мм;

δ - зазор, необходимый для прохода в эксплуатационную колонну теплоизолированной насосно-компрессорной трубы и циркуляционной трубки, мм,

до спуска в скважину, соединенную по всей длине с верхним участком теплоизолированной насосно-компрессорной трубы, при этом их спуск в скважину и подвеску на устье проводят со смещением оси насосно-компрессорной трубы относительно оси скважины на величину, определяемую по формуле

где Е - расстояние между осью скважины и осью теплоизолированной насосно-компрессорной трубы, мм,

причем, верхний конец циркуляционной трубки в летний период соединяют с нагнетательной линией теплообменной установки, в зимний период - с нагнетательной линией холодильной установки, а в период эксплуатации скважины осуществляют принудительную циркуляцию дизельного топлива в верхней части эксплуатационной колонны через циркуляционную трубку с последующим подъемом по кольцевому пространству, обеспечивая расход дизельного топлива, определяемый по формуле

где Q - расход дизельного топлива, м3/с;

q - тепловая мощность, передаваемая теплоизолированной насосно-компрессорной трубой дизельному топливу, Вт, рассчитываемая по формуле

где tcp - средняя температура дизельного топлива в кольцевом пространстве, °С;

αф - коэффициент теплоотдачи добываемого флюида,

ДВНКТ - внутренний диаметр насосно-компрессорной трубы, мм;

λсm - коэффициент теплопроводности стали насосно-компрессорной трубы, ;

ДНКТ - наружный диаметр насосно-компрессорной трубы, мм;

λиз - коэффициент теплопроводности теплоизолирующего материала,

αДТ - коэффициент теплоотдачи дизельного топлива,

ρ - плотность дизельного топлива, кг/м3;

с - удельная теплоемкость дизельного топлива, ;

tОДТ - температура, до которой охлаждается дизельное топливо на поверхности, °С.

www.findpatent.ru

Способ заканчивания газовой скважины (варианты)

Группа изобретений относится к нефтегазодобывающей промышленности, а именно к заканчиванию после бурения и крепления газовых и газоконденсатных скважин, расположенных в зоне многолетнемерзлых пород. Способ заканчивания газовой скважины, при котором на обустроенном и необустроенном кустах после завершения бурения и крепления заменяют буровой раствор на техническую воду. Осуществляют опрессовку эксплуатационной колонны. В скважину спускают лифтовую колонну с приустьевым клапаном-отсекателем, циркуляционным клапаном, пакером и посадочным ниппелем. Подвешивают лифтовую колонну в подвеске трубной головки и устанавливают на устье скважины фонтанную арматуру. Ствол скважины заполняют незамерзающей рабочей жидкостью. В посадочном ниппеле устанавливают глухую пробку, в лифтовой колонне над глухой пробкой создают избыточное давление и запакеровывают пакер. По второму варианту, на необсаженном кусте при опережающем строительстве закрывают приустьевой клапан, расположенный выше пакера, в подвеске трубной головки устанавливают обратный клапан, а в боковых отводах трубной головки - резьбовые пробки. Оставляют скважину на период ожидания обустройства куста. После завершения обустройства куста из боковых отводов трубной головки извлекают резьбовые пробки, а из подвески - обратный клапан, открывают приустьевой клапан-отсекатель. По обоим вариантам на обустроенном и необустроенном кустах из скважины извлекают глухую пробку. В лифтовую колонну спускают гибкую трубу и из скважины вытесняют незамерзающую рабочую жидкость инертным газом. Из скважины поднимают гибкую трубу, в лифтовую колонну спускают перфорационную сборку и осуществляют перфорацию эксплуатационной колонны в газовой среде. Техническим результатом является устранение загрязнения призабойной зоны пласта, сокращение продолжительности работ по заканчиванию скважины и облегчение ввода скважины в эксплуатацию. 2 н.п. ф-лы, 1 ил.

 

Изобретение относится к нефтегазодобывающей промышленности, а именно к заканчиванию после бурения и крепления газовых и газоконденсатных скважин, расположенных в зоне многолетнемерзлых пород (ММП), в том числе в процессе опережающего до обустройства месторождения строительства этих скважин.

Известен способ заканчивания строительства скважин, включающий крепление ствола скважин, спуск насосно-компрессорных труб, вскрытие продуктивного пласта-коллектора, вызов притока флюида в скважину [RU 2165516].

Недостатком данного способа является загрязнение призабойной зоны пласта (ПЗП) фильтратами бурового раствора и фильтрационной жидкостью.

Известен способ заканчивания скважины, включающий бурение скважины из-под башмака предыдущей колонны до проектного горизонта, спуск и цементирования обсадной колонны путем закачки и продавки буферной жидкости и тампонажного раствора, ожидание затвердевания цемента (ОЗЦ) и последующую опрессовку обсадной колонны. После этого в скважину спускают обсадную колонну, перфорируют и осваивают [Соловьев Е.М. Заканчивание скважин. - М.: Недра, 1979. с.169, 170-175, 211-214, 235-236, 263-264, 266-272].

Недостатком данного способа является загрязнение ПЗП фильтратами бурового раствора и фильтрационной жидкости.

Задача предлагаемого изобретения состоит в разработке надежного способа заканчивания скважин.

Достигаемый технический результат, который получается в результате создания изобретения, состоит в устранении загрязнения ПЗП, сокращении продолжительности работ по заканчиванию скважины и в облегчении ввода скважины в эксплуатацию.

Поставленная задача и технический результат по двум вариантам достигаются тем, что при заканчивании газовой скважины на обустроенном и необустроенном кусте после завершения бурения и крепления заменяют буровой раствор на техническую воду, осуществляют опрессовку эксплуатационной колонны, в скважину спускают лифтовую колонну с приустьевым клапаном-отсекателем, циркуляционным клапаном, пакером и посадочным ниппелем, подвешивают лифтовую колонну в подвеске трубной головки и устанавливают на устье скважины фонтанную арматуру, ствол скважины заполняют незамерзающей рабочей жидкостью, например газовым конденсатом, водометанольным раствором или дизельным топливом, в посадочном ниппеле устанавливают глухую пробку, в лифтовой колонне над глухой пробкой создают избыточное давление и запакеровывают пакер, по второму варианту, при котором на необсаженном кусте при опережающем строительстве закрывают приустьевой клапан, расположенный выше пакера, в подвеске трубной головки устанавливают обратный клапан, а в боковых отводах трубной головки - резьбовые пробки, оставляют скважину на период ожидания обустройства куста, при этом в трубном и затрубном надпакерном пространстве находится незамерзающая рабочая жидкость, после завершения обустройства куста из боковых отводов трубной головки извлекают резьбовые пробки, а из подвески - обратный клапан, открывают приустьевой клапан-отсекатель. По обоим вариантам из скважины извлекают глухую пробку, в лифтовую колонну спускают гибкую трубу и из скважины вытесняют незамерзающую рабочую жидкость инертным газом, из скважины поднимают гибкую трубу, в лифтовую колонну спускают перфорационную сборку и осуществляют перфорацию эксплуатационной колонны в газовой среде, скважину осваивают, отрабатывают в газопровод до чистого газа и пускают в эксплуатацию, при этом в затрубном надпакерном пространстве находится незамерзающая рабочая жидкость, например газовый конденсат, водометанольный раствор или дизельное топливо.

На чертеже показана схема реализации способа при заканчивании газовой скважины.

В пробуренной скважине, размещенной на обустроенном кусте по обоим вариантам, буровой раствор заменяют на техническую воду, осуществляют опрессовку эксплуатационной колонны 1.

В эксплуатационную колонну 1 спускают лифтовую колонну 2 с приустьевым клапаном-отсекателем 3, циркуляционным клапаном 4, пакером 5 и посадочным ниппелем 6. Лифтовую колонну 2 подвешивают в подвеске 7 трубной головки 8 фонтанной арматуры 9.

Ствол скважины заполняют незамерзающей рабочей жидкостью, например газовым конденсатом, водометанольным раствором или дизельным топливом.

В посадочный ниппель 6 с помощью канатной техники спускают и устанавливают глухую пробку, которая перекрывает трубное пространство 10 скважины и герметизирует его. Созданием давления над глухой пробкой осуществляют запакеровку пакера 5. В процессе запакеровки пакера 5 осуществляется крепление пакера 5 в эксплуатационной колонне 1 с помощью его шлипсов и герметизация затрубного пространства 11 скважины с помощью уплотнительных манжет пакера 5. При этом затрубное пространство 11 и трубное пространство 10 выше и ниже глухой пробки и пакера 5 остаются заполненными незамерзающей рабочей жидкостью, например газовым конденсатом, дизельным топливом или водометанольным раствором.

По второму варианту при заканчивании газовой скважины на необустроенном кусте при опережающем строительстве после установки глухой пробки и запакеровки пакера 5 закрывают приустьевой клапан 3. В подвеске 7 трубной головки 8 фонтанной арматуры 9 устанавливают обратный клапан, а в боковых отводах трубной головки 8 - резьбовые пробки.

Задвижки на фонтанной арматуре 9 закрывают, с них снимают штурвалы. Боковые отводы фонтанной арматуры 9 герметизируют глухими фланцами.

Оставляют скважину на период ожидания обустройства куста, при этом в трубном 10 и затрубном 11, в том числе и в надпакерном затрубном, пространствах скважины остается незамерзающая жидкость.

После завершения обустройства куста из боковых отводов трубной головки 8 извлекают резьбовые пробки, а из подвески 7 - обратный клапан и открывают приустьевой клапан-отсекатель 3.

По обоим вариантам освоение скважины проводят идентично. Из скважины извлекают глухую пробку В лифтовую колонну 2 спускают гибкую трубу и с ее помощью вытесняют из лифтовой колонны 2 незамерзающую рабочую жидкость инертным газом. Из скважины извлекают гибкую трубу. В лифтовую колонну 2 спускают перфорационную сборку и осуществляют перфорацию эксплуатационной колонны 1 в газовой среде.

Скважину осваивают, отрабатывают в газопровод до чистого газа и пускают в эксплуатацию, при этом в надпакерном затрубном пространстве 11 остается незамерзающая рабочая жидкость, например газовый конденсат, водометанольный раствор или дизельное топливо.

В качестве незамерзающей жидкости для скважин в условиях гидростатического или аномально низкого пластового давлений возможно использование газового конденсата, дизельного топлива или водометанольного раствора, а для скважин в условиях аномально высокого пластового давления возможно использование загущенного газового конденсата или другой загущенной углеводородной жидкости, обладающей более низкой теплопроводностью.

Предлагаемый способ заканчивания газовой скважины обеспечивает сохранность продуктивной характеристики пласта, уменьшает продолжительность технологических процессов, снижает затраты, облегчает вызов притока из пласта.

Применение этого способа особенно актуально для скважин с низким пластовым давлением или невысокими продуктивными характеристиками пласта, для скважин с трудноизвлекаемыми запасами углеводородного сырья, когда даже непродолжительное время нахождения скважины под воздействием бурового раствора, утяжеленной технологической жидкости или перфорационной жидкости чревато негативными последствиями: большими затратами на ввод скважины в эксплуатацию. Примером тому служат газовые и газоконденсатные скважины Ямбургского месторождения, пробуренные на необустроенных кустах в процессе опережающего строительства, не освоенные и не введенные в эксплуатацию до настоящего времени.

1. Способ заканчивания газовой скважины, при котором в скважине на обустроенном кусте после завершения бурения и крепления заменяют буровой раствор на техническую воду, осуществляют опрессовку эксплуатационной колонны, в скважину спускают лифтовую колонну с приустьевым клапаном-отсекателем, циркуляционным клапаном, пакером и посадочным ниппелем, подвешивают лифтовую колонну в подвеске трубной головки и устанавливают на устье скважины фонтанную арматуру, ствол скважины заполняют незамерзающей рабочей жидкостью, например газовым конденсатом, водометанольным раствором или дизельным топливом, в посадочном ниппеле устанавливают глухую пробку, в лифтовой колонне над глухой пробкой создают избыточное давление и запакеровывают пакер, из скважины извлекают глухую пробку, в лифтовую колонну спускают гибкую трубу и из скважины вытесняют незамерзающую рабочую жидкость инертным газом, из скважины поднимают гибкую трубу, в лифтовую колонну спускают перфорационную сборку и осуществляют перфорацию эксплуатационной колонны в газовой среде, скважину осваивают, отрабатывают в газопровод до чистого газа и пускают в эксплуатацию, при этом в затрубном надпакерном пространстве находится незамерзающая рабочая жидкость, например газовый конденсат, водометанольный раствор или дизельное топливо.

2. Способ заканчивания газовой скважины, при котором на необсаженном кусте при опережающем строительстве заменяют буровой раствор на техническую воду, осуществляют опрессовку эксплуатационной колонны, в скважину спускают лифтовую колонну с приустьевым клапаном-отсекателем, циркуляционным клапаном, пакером и посадочным ниппелем, подвешивают лифтовую колонну в подвеске трубной головки и устанавливают на устье скважины фонтанную арматуру, ствол скважины заполняют незамерзающей рабочей жидкостью, например газовым конденсатом, водометанольным раствором или дизельным топливом, в посадочном ниппеле устанавливают глухую пробку, в лифтовой колонне над глухой пробкой создают избыточное давление и запакеровывают пакер, закрывают приустьевой клапан, в подвеске трубной головки устанавливают обратный клапан, а в боковых отводах трубной головки - резьбовые пробки, оставляют скважину на период ожидания обустройства куста, при этом в трубном и затрубном надпакерном пространстве находится незамерзающая рабочая жидкость, после завершения обустройства куста из боковых отводов трубной головки извлекают резьбовые пробки, а из подвески - обратный клапан, открывают приустьевой клапан-отсекатель, из скважины извлекают глухую пробку, в лифтовую колонну спускают гибкую трубу и из скважины вытесняют незамерзающую рабочую жидкость инертным газом, из скважины поднимают гибкую трубу, в лифтовую колонну спускают перфорационную сборку и осуществляют перфорацию эксплуатационной колонны в газовой среде, скважину осваивают, отрабатывают в газопровод до чистого газа и пускают в эксплуатацию, при этом в затрубном надпакерном пространстве находится незамерзающая рабочая жидкость, например газовый конденсат, водометанольный раствор или дизельное топливо.

www.findpatent.ru

Камин: какое топливо выбрать?

Обсадная пластиковая труба — преимущества использования для скважинКак правило, в большинстве загородных домов нет централизованного водоснабжения. Проблема обеспечения жильцов питьевой и технической водой решается сооружением колодца и скважины. Скважина – самый распространенный вариант, поскольку она позволяет добраться до глубинных водоносных слоев, которые априори чистые и безопасные для человека. Но вот глубина такой скважины во многом зависит от особенностей участка. Порой она может достигать длины в пару сотен метров.

Просто пробурить скважину недостаточно. Обязательно нужно обеспечить защиту ее стенок. Для того, чтобы пробуренный канал не осыпался нужно установить обсадную трубу. К слову, труба не только защитит канал, но позволит при необходимости без проблем извлекать из скважины подающий элемент с фильтром и менять. Трубы ПНД можно купить онлайн на сайте ingplast.ru.

На сегодняшний день используются стальные, асбестоцементные и пластиковые трубы. Стальные обсадные трубы отличаются повышенной прочностью. Но их главная проблема – невозможность длительный срок противостоять коррозии. Конечно, можно изготовить стальную трубу из нержавейки, но цена ее будет заоблачная.

Асбестоцементные трубы также очень прочные, но стенки у них слишком толстые, в результате качественное соединение практически невозможно. Кроме того, асбест, содержащийся в трубах, не улучшает качество воды.

Лучший вариант — обсадные ПНД трубы для скважин. Их изготавливают методом экструзии из полиэтилена при низком давлении. Обсадные ПНД трубы для скважин гораздо прочнее остальных пластиковых труб за счет более высокой плотности материала. Такие трубы безопасны для человека и используются в системах с питьевой водой. И самое главное, ПНД трубы имеют очень малый вес. Они обладают рядом очевидных преимуществ:

• Минимальный вес.• Простота монтажа с помощью уплотнительных колец.• Независимость от рабочих температур.• Практически полное отсутствие коррозии, что положительно сказывается на свойствах воды.• Долговечность.• Минимальная стоимость в сравнении с другими трубами.

Существует три варианта размещения водоносного слоя в грунте:

• Верховой.• Грунтовый.• Артезианский.

Первый располагается у самой земли. Обычно он не залегает глубже пяти метров. Использовать этот слой можно лишь для технических нужд.Второй может находиться на глубине в несколько десятков метров. Третий находится на самой большой глубине – до двухсот пятидесяти метров.Для грунтового водоносного слоя используются обсадные ПНД трубы диаметром в сто двадцать пять миллиметров. Вода из этого слоя отличается хорошим качеством, а сооружение самой скважины обходится недорого.

Артезианская вода – самая лучшая. Для использования такой скважины можно использовать лишь обсадную трубу и запорную арматуру. Вода будет сама подниматься по трубе под воздействием массы грунта. Считается, что если на участке обнаружена артезианская вода, то это настоящее счастье.

Единственное, что портит настроение – такая скважина обойдется в копеечку, ведь бурить придется на большую глубину. Но и здесь можно использовать обсадные ПНД трубы для скважины. Так что можно говорить об экономии средств. Правда, нужно выбирать трубы с большими показателями толщины стенок. Они должны противостоять большому давлению. Для артезианских скважин нередко используется телескопический способ установки труб ПНД. Чем ниже опускается труба, тем меньше ее диаметр и тем толще стенки.

Существуют ограничения для использования труб ПНД. По сути, ограничение одно – нельзя использовать такие трубы в скважинах на больших глубинах, если через скважину будут проходить большой расход воды.

o-cemente.info

Добыча и применение нефти

 

 

Бурный научно-технический прогресс и высокие темпы развития различных отраслей науки и мирового хозяйства в XIX – XX вв. привели к резкому увеличению потребления различных полезных ископаемых, особое место среди которых заняла нефть. Нефть начали добывать на берегу Евфрата за 6 – 4 тыс. лет до нашей эры. Использовалась она и в качестве лекарства. Древние египтяне использовали асфальт (окисленную нефть) для бальзамирования. Нефтяные битумы использовались для приготовления строительных растворов. Нефть входила в состав "греческого огня". В средние века нефть использовалась для освещения в ряде городов на Ближнем Востоке, Южной Италии и др. В начале XIX в. в России, а в середине XIX в. в Америке из нефти путем возгонки был получен керосин. Он использовался в лампах. До середины XIX в. нефть добывалась в небольших количествах из глубоких колодцев вблизи естественных выходов ее на поверхность. Изобретение парового, а затем дизельного и бензинового двигателя привело к бурному развитию нефтедобывающей промышленности.

Нефть – это жидкая природная смесь разнообразных углеводородов с небольшим количеством других органических соединений; ценное полезное ископаемое, залегающее часто вместе с газообразными углеводородами; маслянистая горючая жидкость, обладающая специфическим запахом, обычно коричневого цвета с зеленоватым или другим оттенком, иногда почти черная, очень редко бесцветная.

Нефть – это горная порода. Она относится к группе осадочных пород вместе с песками, глинами, известняками, каменной солью и др. Мы привыкли считать, что порода – это твердое вещество, из которого состоит земная кора и более глубокие недра Земли. Оказывается, есть и жидкие породы, и даже газообразные. Одно из важных свойств нефти – способность гореть.

Состав нефти

По составу нефть — сложная смесь углеводородов различной молекулярной массы, главным образом жидких (в них растворены твердые и газообразные углеводороды). В зависимости от месторождения нефть имеет различный качественный и количественный состав. Нефть состоит главным образом из углерода – 79,5-87,5% и водорода – 11,0-14,5% от массы нефти. Кроме них в нефти присутствуют еще три элемента – сера, кислород и азот. Их общее количество обычно составляет 0,5-8%. В незначительных концентрациях в нефти встречаются элементы: ванадий, никель, железо, алюминий, медь, магний, барий, стронций, марганец, хром, кобальт, молибден, бор, мышьяк, калий. Их общее содержание не превышает 0,02-0,03% от массы нефти. Указанные элементы образуют органические и неорганические соединения, из которых состоит нефть. Кислород и азот находятся в нефти только в связанном состоянии. Сера может встречаться в свободном состоянии или входить в состав сероводорода.

В состав нефти входит около 425 углеводородных соединений. Главную часть нефти составляют три группы УВ: метановые, нафтеновые и ароматические. Наряду с углеводородами в нефти присутствуют химические соединения других классов. Обычно все эти классы объединяют в одну группу гетеросоединений (греч. "гетерос" – другой). В нефти также обнаружено более 380 сложных гетеросоединений, в которых к углеводородным ядрам присоединены такие элементы, как сера, азот и кислород. В нефти так же выделяют неуглеводородные соединения: асфальто-смолистую части, порфирины, серу и зольную часть. Кислород в нефти встречается в связанном состоянии также в составе нафтеновых кислот (около 6%) – Cnh3n-1(COOH), фенолов (не более 1%) – C6H5OH, а также жирных кислот и их производных – C6H5O6(P). Содержание азота в нефти не превышает 1%, содержание смол может достигать 60% от массы нефти.

Образование нефти

В последние годы благодаря трудам главным образом геологов, химиков, биологов, физиков и исследователей других специальностей удалось выяснить основные закономерности в процессах нефтеобразования. В настоящее время установили, что нефть органического происхождения, т.е. она, как и уголь, возникла в результате преобразования органических веществ. Процесс образования нефти начался много миллионов лет назад вместе с развитием жизни и продолжается, по сей день. Нефть причислена к невозобновляющимся источникам энергии, человек не в силах создать новое месторождение нефти за короткий срок.

Нефть и горючий газ накапливаются в пористых породах, называемых коллекторами. Хорошим коллектором является пласт песчаника, заключенный среди непроницаемых пород, таких, как глины или глинистые сланцы, препятствующие утечке нефти и газа из природных резервуаров. Наиболее благоприятные условия для образования месторождений нефти и газа возникают в тех случаях, когда пласт песчаника изогнут в складку, обращенную сводом кверху. При этом верхняя часть такого купола бывает заполнена газом, ниже располагается нефть, а еще ниже — вода.

О том, как образовались месторождения нефти и горючего газа, ученые много спорят. Одни геологи — сторонники гипотезы неорганического происхождения — утверждают, что нефтяные и газовые месторождения образовались вследствие просачивания из глубин Земли углерода и водорода, их объединения в форме углеводородов и накопления в породах — коллекторах. Другие геологи, их большинство, полагают, что нефть, подобно углю, возникла из органической массы, погребенной на глубину под морские осадки, где из нее выделялись горючие жидкость и газ. Это органическая гипотеза происхождения нефти и горючего газа. Обе эти гипотезы объясняют часть фактов, но оставляют без ответа другую их часть.

По вопросу об исходном материале существовали разные мнения. Некоторые учёные полагали, что нефть возникла из жиров погибших животных (рыбы, планктон и др.), другие считали, что главную роль играли белки, третьи придавали большое значение углеводам. Теперь доказано, что нефть может образоваться из жиров, белков и углеводов, т.е. из всей суммы органических веществ. Нефть образуется под поверхностью земли в процессе разложения морских организмов. Останки крошечных микроорганизмов, которые жили в море и в меньшей степени тех, что жили на суше и были унесены в море волнами рек, растения, растущие на дне океана – все это перемешивается с песком и илом, покоящимися на дне океана. Такие места, богатые органическими составляющими, становятся нефтематеринской породой для образования сырой нефти.

Постепенно отложения становятся все толще и толще и под собственной тяжестью погружаются все глубже в морское дно. Когда новые пласты накапливаются сверху, давление на нижние слои возрастает в несколько тысяч раз, а температура поднимается на несколько сотен градусов, грязь и песок затвердевают и превращаются в глинистый сланец и песчаник, карбонатный осадок и остатки раковин образуют известняк, а останки мертвых организмов трансформируются в сырую нефть и природный газ.

Как только нефть формируется, она начинает двигаться вверх, ближе к поверхности земли, поскольку плотность нефти меньше плотности морской воды, которая наполняет трещины в породах, песках и скалах, образующих земную кору. Природный газ и сырая нефть просачиваются в микроскопические поры пластов, расположенных выше. Иногда случается так, что нефть попадает в непроницаемые слои отложений или в окружения толстого слоя скалистых пород, который не позволяет ей двигаться дальше. Нефть попадает в ловушку, так образуются нефтяные месторождения.

Добыча нефти

Добыча нефти ведется человечеством с древних времен. Сначала применялись примитивные способы: сбор нефти с поверхности водоемов, обработка песчаника или известняка, пропитанного нефтью, при помощи колодцев. Первый способ применялся еще в Мидии и Сирии, второй - в 15 веке в Италии. Но началом развития нефтяной промышленности принято считать время появления механического бурения скважин на нефть в 1859 году в США, и сейчас практически вся добываемая в мире нефть извлекается посредством буровых скважин. За сотню с лишним лет развития истощились одни месторождения, были открыты другие, повысилась эффективность добычи нефти, увеличилась нефтеотдача, т.е. полнота извлечения нефти из пласта. Но изменилась структура добычи топлива.

Главная машина для добычи нефти и газа — буровой станок. Первые буровые станки, появившиеся сотни лет назад, по существу, копировали рабочего с ломом. Только лом у этих первых станков был потяжелее и по форме напоминал скорее долото. Он так и назывался — буровое долото. Его подвешивали на канате, который то поднимали с помощью ворота, то опускали. Такие машины называются ударно-канатными. Их можно встретить кое-где и сейчас, но это уже вчерашний день техники: очень уж медленно пробивают они отверстие в камне, очень много расходуют энергии зря.

Гораздо быстрее и выгоднее другой способ бурения — роторный, при котором скважина высверливается. К ажурной металлической четырехногой вышке высотой с десятиэтажный дом подвешена толстая стальная труба. Ее вращает специальное устройство — ротор. На нижнем конце трубы — бур. По мере того как скважина становится глубже, трубу удлиняют. Чтобы разрушенная порода не забила скважину, в нее насосом через трубу нагнетают глинистый раствор. Раствор промывает скважину, уносит из нее вверх по щели между трубой и стенами скважины разрушенную глину, песчаник, известняк. Одновременно плотная жидкость поддерживает стенки скважины, не давая им обрушиться.

Но и у роторного бурения есть свой недостаток. Чем глубже скважина, тем тяжелее работать двигателю ротора, тем медленнее идет бурение. Ведь одно дело вращать трубу длиной 5—10 м, когда бурение скважины только начинается, и совсем другое — крутить колонну труб длиной 500 м. А что делать, если глубина скважины достигает 1 км? 2 км? В 1922 г. советские инженеры М. А. Капелюшников, С. М. Волох и Н. А. Корнев впервые в мире построили машину для бурения скважин, в которой не нужно было вращать буровые трубы. Изобретатели поместили двигатель не наверху, а внизу, в самой скважине — рядом с буровым инструментом. Теперь всю мощность двигатель расходовал только на вращение самого бура. У этого станка и двигатель был необыкновенный. Советские инженеры заставили ту самую воду, которая раньше только вымывала из скважины разрушенную породу, вращать бур. Теперь, прежде чем достигнуть дна скважины, глинистый раствор вращал маленькую турбину, прикрепленную к самому буровому инструменту.

Новый станок назвали турбобуром, со временем его усовершенствовали, и теперь в скважину опускают несколько турбин, насаженных на один вал. Понятно, что мощность такой "многотурбинной" машины во много раз больше и бурение идет во много раз быстрее. Другая замечательная буровая машина — электробур, изобретенный инженерами А. П. Островским и Н. В. Александровым. Первые нефтяные скважины пробурили электробуром в 1940 г. У этой машины колонна труб тоже не вращается, работает только сам буровой инструмент. Но вращает его не водяная турбина, а электрический двигатель, помещенный в стальную рубашку — кожух, заполненный маслом. Масло все время находится под высоким давлением, поэтому окружающая вода не может проникнуть в двигатель. Чтобы мощный двигатель мог поместиться в узкой нефтяной скважине, пришлось делать его очень высоким, и двигатель получился похожим на столб: диаметр у него, как у блюдца, а высота—6-7 м.

Бурение — основная работа при добыче нефти и газа. В отличие, скажем, от угля или железной руды нефть и газ не нужно отделять от окружающего массива машинами или взрывчаткой, не нужно поднимать на поверхность земли конвейером или в вагонетках. Как только скважина достигла нефтеносного пласта, нефть, сжатая в недрах давлением газов и подземных вод, сама с силой устремляется вверх. По мере того как нефть изливается на поверхность, давление уменьшается, и оставшаяся в недрах нефть перестает течь вверх. Тогда через специально пробуренные вокруг нефтяного месторождения скважины начинают нагнетать воду. Вода давит на нефть и выдавливает ее на поверхность по вновь ожившей скважине. А затем наступает время, когда только вода уже не может помочь. Тогда в нефтяную скважину опускают насос и начинают выкачивать из нее нефть.

Переработка нефти

 Алкилирование появилось в 1930 г. В процессе алкилляции маленькие молекулы, полученные методом термического растрескивания, переорганизовываются под действием катализатора. В результате чего образуются молекулы с разветвленной цепью в зоне кипения бензина, обладающие более высокими показателями, например повышенной антидетонационной способность, такой способностью обладает горючее, обеспечивающее работу двигателей современного самолета.

Крекинг. Крекингом называется процесс расщепления углеводородов, содержащихся в нефти, в результате которого образуются углеводороды с меньшим числом атомов углерода в молекуле. Выход бензина из нефти можно значительно увеличить (до 65-70 %) путем расщепления углеводородов с длинной цепью, содержащихся, например, в мазуте, на углеводороды с меньшей относительной молекулярной массой. Такой процесс называется крекингом (от англ. Crack- расщеплять). Крекинг изобрел русский инженер В. Г. Шухов в 1891 г. В 1913 г изобретение Шухова начали применять в Америке. В настоящее время в США 65% всех бензинов получается на крекинг - заводах. На крекинг-заводах углеводороды не перегоняются, а расщепляются. Процесс ведётся при более высоких температурах (до 600о), часто при повышенном давлении. При таких температурах крупные молекулы углеводородов раздробляются на более мелкие.

Мазут густ и тяжёл, его удельный вес близок к единице. Это потому, что он состоит из сложных и крупных молекул углеводородов. Когда мазут подвергается крекингу, часть составляющих его углеводородов раздробляется на более мелкие. А из мелких углеводородов как раз и составляются лёгкие нефтяные продукты - бензин, керосин. Мазут – остаток первичной перегонки. На крекинг-заводе он снова подвергается переработке, и из него, так же как из нефти на заводе первичной перегонки, получают бензин, лигроин керосин. При первичной перегонки нефть подвергается только физическим изменениям. От неё отгоняются лёгкие фракции, т. е. отбираются части её, кипящие при низких температурах и состоящие из разных по величине углеводородов. Сами углеводороды остаются при этом неизменёнными.

При крекинге нефть подвергается химическим изменениям. Меняется строение углеводородов. В аппаратах крекинг-заводов происходят сложные химические реакции. Эти реакции усиливаются, когда в аппаратуру вводят катализаторы. Одним из таких катализаторов является специально обработанная глина. Эта глина в мелком раздробленном состоянии – в виде пыли – вводится в аппаратуру завода. Углеводороды, находящиеся в парообразном и газообразном состоянии, соединяются с пылинками глины и раздробляются на их поверхности. Такой крекинг называется крекингом с пылевидным катализатором. Этот вид крекинга теперь широко распространяется. Катализатор потом отделяется от углеводородов. Углеводороды идут своим путём на ректификацию и в холодильники, а катализатор – в свои резервуары, где его свойства восстанавливаются. Катализаторы – крупнейшее достижение нефтепереработки. На крекинг-установках всех систем получают бензин, лигроин, керосин, соляр и мазут. Главное внимание уделяют бензину. Его стараются получить больше и обязательно лучшего качества. Каталитический крекинг появился именно в результате долголетней, упорной борьбы нефтяников за повышение качества бензина.

Риформинг – (от англ. Reforming – переделывать, улучшать) промышленный процесс переработки бензиновых и лигроиновых фракций нефти с целью получения высококачественных бензинов и ароматических углеводородов. При этом молекулы углеводородов в основном не расщепляются, а преобразуются. Сырьем служит бензинолигроиновая фракция нефти. С 40-х годов риформинг – каталитический процесс, научные основы которого разработаны Н. Д. Зелинским, а также В. И. Каржевым, Б. Л. Молдавским. Впервые этот процесс был осуществлен в 1940 г в США. Его проводят в промышленной установке, имеющей нагревательную печь и не менее 3-4 реакторов при t 350-520 0 С, в присутствии различных катализаторов: платиновых и полиметаллических, содержащих платину, рений, иридий, германий и др. во избежание дезактивации катализатора продуктом уплотнения коксом, риформинг осуществляется под высоким давлением водорода, который циркулирует через нагревательную печь и реакторы. В результате риформинга бензиновых фракций нефти получают 80-85 % бензин с октановым числом 90-95, 1-2% водорода и остальное количество газообразных углеводородов. Из трубчатой печи под давлением нефть подается в реакционную камеру, где и находится катализатор, отсюда она идет в ректификационную колонну, где разделяется на продукты. Большое значение имеет риформинг для производства ароматических углеводородов (бензола, толуола, ксилола и др.). Ранее основным источником получения этих углеводородов была коксовая промышленность.

Использование нефти

Из нефти выделяют разнообразные продукты, имеющие большое практическое значение. В начале от нее отделяют растворенные углеводороды (преимущественно метан). После отгонки летучих углеводородов нефть нагревают. Первыми переходят в газообразное состояние и отгоняются углеводороды с небольшим числом атомов углерода в молекуле, имеющие относительно низкую температуру кипения. С повышением температуры смеси перегоняются углеводороды с более высокой температурой кипения. Таким образом, можно собрать отдельные смеси (фракции) нефти. Чаще всего при такой перегонке получают три основные фракции, которые затем подвергаются дальнейшему разделению.

В настоящее время из нефти получают тысячи продуктов. Основными группами являются жидкое топливо, газообразное топливо, твердое топливо (нефтяной кокс), смазочные и специальные масла, парафины и церезины, битумы, ароматические соединения, сажа, ацетилен, этилен, нефтяные кислоты и их соли, высшие спирты. Эти продукты включают горючие газы, бензин, растворители, керосин, газойль, бытовое топливо, широкий состав смазочных масел, мазут, дорожный битум и асфальт; сюда относятся также парафин, вазелин, медицинские и различные инсектицидные масла.

Масла из нефти используются как мази и кремы, а также в производстве взрывчатых веществ, медикаментов, чистящих средств, наибольшее применение продукты переработки нефти находят в топливно-энергетической отрасли. Например, мазут обладает почти в полтора раза более высокой теплотой сгорания по сравнению с лучшими углями. Он занимает мало места при сгорании и не дает твердых остатков при горении. Замена твердых видов топлива мазутом на ТЭС, заводах и на железнодорожном и водном транспорте дает огромную экономию средств, способствует быстрому развитию основных отраслей промышленности и транспорта.

Энергетическое направление в использовании нефти до сих пор остается главным во всем мире. Доля нефти в мировом энергобалансе составляет более 46%. Однако в последние годы продукты переработки нефти все шире используются как сырье для химической промышленности. Около 8% добываемой нефти потребляются в качестве сырья для современной химии. Например, этиловый спирт применяется примерно в 150 отраслях производства. В химической промышленности применяются формальдегид (HCHO), пластмассы, синтетические волокна, синтетический каучук, аммиак, этиловый спирт и т.д. Продукты переработки нефти применяются и в сельском хозяйстве. Здесь используются стимуляторы роста, протравители семян, ядохимикаты, азотные удобрения, мочевина, пленки для парников и т.д. В машиностроении и металлургии применяются универсальные клеи, детали и части аппаратов из пластмасс, смазочные масла и др.

Широкое применение нашел нефтяной кокс, как анодная масса при электровыплавке. Прессованная сажа идет на огнестойкие обкладки в печах. В пищевой промышленности применяются полиэтиленовые упаковки, пищевые кислоты, консервирующие средства, парафин, производятся белково-витаминные концентраты, исходным сырьем, для которых служат метиловый и этиловый спирты и метан. В фармацевтической и парфюмерной промышленности из производных переработки нефти изготовляют нашатырный спирт, хлороформ, формалин, аспирин, вазелин и др. Производные нефтесинтеза находят широкое применение и в деревообрабатывающей, текстильной, кожевенно-обувной и строительной промышленности.

Нефть – ценнейшее природное ископаемое, открывшее перед человеком удивительные возможности "химического перевоплощения". Всего производных нефти насчитывается уже около 3 тысяч. Нефть занимает ведущее место в мировом топливно-энергетическом хозяйстве. Ее доля в общем потреблении энергоресурсов непрерывно растет. Нефть составляет основу топливно-энергетических балансов всех экономически развитых стран. В настоящее время из нефти получают тысячи продуктов.

Нефть останется в ближайшем будущем основой обеспечения энергией народного хозяйства и сырьем нефтегазохимической промышленности. Здесь будет многое зависеть от успехов в области поисков, разведки и разработки нефтяных месторождений. Но ресурсы нефти в природе ограничены. Бурное наращивание в течение последних десятилетий их добычи привело к относительному истощению наиболее крупных и благоприятно расположенных месторождений.

В проблеме рационального использования нефти большое значение имеет повышение коэффициента их полезного использования. Одно из основных направлений здесь предполагает углубление уровня переработки нефти в целях обеспечения потребности страны в светлых нефтепродуктах и нефтехимическом сырье. Другим эффективным направлением является снижение удельного расхода топлива на производство тепловой и электрической энергии, а также повсеместное снижение удельного расхода электрической и тепловой энергии во всех звеньях народного хозяйства.



biofile.ru


Смотрите также