Открытый урок-лекция "Электризация тел. Проводники и диэлектрики". Бензин диэлектрик или проводник


Классификация материалов по способности проводить электрический ток.

При появлении в нашей жизни электричества, мало кто знал о его свойствах и параметрах, и в качестве проводников использовали различные материалы, было заметно, что при одной и той же величине напряжения источника тока на потребителе было разное значение напряжения. Было понятно, что на это влияет вид материала применяемого в качестве проводника. Когда ученные занялись вопросом по изучению этой проблемы они пришли к выводу, что в материале носителями заряда являются электроны. И способность проводить электрический ток обосабливается наличием свободных электронов в материале. Было выяснено, что у некоторых материалов этих электронов большое количество, а у других их вообще нет. Таким образом существуют материалы, которые хорошо проводят электрический ток, а некоторые не обладают такой способностью.Исходя из всего выше сказанного, все материалы поделились на три группы:

  • проводники;
  • полупроводники;
  • диэлектрики;

 Каждая из групп нашла широкое применение в электротехнике.

Проводники

Проводниками являются материалы, которые хорошо проводят электрический ток, их применяют для изготовления проводов, кабельной продукции, контактных групп, обмоток, шин, токопроводящих жил и дорожек. Подавляющее большинство электрических устройств и аппаратов выполнена на основе проводниковых материалов. Мало того, скажу, что вся электроэнергетика не могла б существовать не будь этих веществ. В группу проводников входят все металлы, некоторые жидкости и газы.

Так же стоит упомянуть, что среди проводников есть супер проводники, сопротивление которых практически равно нулю, такие материалы очень редки и дороги. И проводники с высоким сопротивлением — вольфрам, молибден, нихром и т.д. Такие материалы используют для изготовления резисторов, нагревательных элементов и спиралей осветительных ламп.

 Но львиная доля в электротехнической сфере принадлежит рядовым проводникам: медь, серебро, алюминий, сталь, различные сплавы этих металлов. Эти материалы нашли самое широкое и огромное применение в электротехнике, особенно это касается меди и алюминия, так как они сравнительно дешевы, и их применение в качестве проводников электрического тока наиболее целесообразно. Даже медь ограничена в своем использовании, её применяют в качестве обмоточных проводов, многожильных кабелях, и более ответственных устройствах, еще реже встречаются медные шинопроводы. А вот алюминий считается королем среди проводников электрического тока, пускай он обладает более высоким удельным сопротивлением чем медь, но это компенсируется его весьма низкой стоимостью и устойчивостью к коррозии. Он широко применяется в электроснабжении, в кабельной продукции, в воздушных линиях, шинопроводах, обычных проводах и т.д.  

 

Полупроводники

Полупроводники, что-то среднее между проводниками и полупроводниками. Главной их особенностью является их зависимость проводить электрический ток от внешних условий. Ключевым условием является, наличие различных примесей в материале, которые как раз-таки обеспечивают возможность проводить электрический ток. Так же при определенной компоновку двух полупроводниковых материалов. На основе этих материалов на данный момент, произведено множество полупроводниковых устройств: диоды, светодиоды, транзисторы, семисторы, тиристоры, стабисторы, различные микросхемы. Существует целая наука, посвященная полупроводникам и устройствам на их основе: электронная техника. Все компьютеры, мобильные устройства. Да что там говорить, практически вся наша техника содержит в себе полупроводниковые элементы.

К полупроводниковым материалам относят: кремний, германий, графит, графен, индий и т.д.

Диэлектрики

Ну и последняя группа материалов, это диэлектрики, вещества не способные проводить электрический ток.  К таким материалам относят: дерево, бумага, воздух, масло, керамика, стекло, пластмассы, полиэтилен, поливинилхлорид, резина и т.д.  Диэлектрики получили широкое применение благодаря своим качествам. Их применяют в качестве изолирующего материала. Они предохраняют соприкосновение двух токоведущих частей, не допускают прямого прикосновения человека с этими частями. Роль диэлектриком в электротехнике не менее важна чем роль проводников, так как обеспечивают стабильную, безопасную работу всех электротехнических и электронных устройств. У всех диэлектриков существует предел, до которого они не способны проводить электрический ток, его называют пробивным напряжением. Это такой показатель, при котором диэлектрик начинает пропускать электрический ток, при этом происходит выделение тепла и разрушение самого диэлектрика. Это значение пробивного напряжения для каждого диэлектрического материала разное и приведено в справочных материалах. Чем он выше, тем лучше, надежней считается диэлектрик.

Параметром, характеризующим способность проводить электрический ток является удельное сопротивление R, единица измерения [Ом] и проводимость, величина обратная сопротивлению. Чем выше этот параметр, тем хуже материал проводит электрический ток. У проводников он равен от нескольких десятых, до сотен Ом.  У диэлектриков сопротивление достигает десятков миллионов ом.

Все три вида материалов нашли широкое применение в электроэнергетике и электротехнике. А так же тесно взаимосвязаны друг с другом.

 

white-santa.ru

2. Проводники, диэлектрики и поток электронов | 1. Основы электроники | Часть1

2. Проводники, диэлектрики и поток электронов

Проводники, диэлектрики и поток электронов

Электроны различных типов атомов обладают разными степенями свободы перемещения. В некоторых материалах, таких как металлы, внешние электроны атомов настолько слабо связаны с ядром, что легко могут покидать свои орбиты и хаотично двигаться в пространстве между соседними атомами даже при комнатной температуре. Такие электроны часто называют свободными электронами. 

В других типах материалов, таких как стекло, у электронов в атомах существует очень небольшая свобода перемещения. Однако внешние силы, например физическое трение, могут заставить некоторые из этих электронов покинуть собственные атомы и перейти к атомам другого материала, но они не могут свободно перемещаться между атомами  материала.

Эта относительная подвижность электронов в материале известна как электропроводность. Электропроводность определяется типами атомов материала (количество протонов в ядре атома, определяющее его химическую идентичность) и способом соединения атомов друг с другом. Материалы с высокой подвижностью электронов (много свободных электронов) называются проводниками, а материалы с низкой подвижностью электронов (мало или совсем нет свободных электронов) называются диэлектриками.

Ниже приведено несколько примеров наиболее распространенных проводников и диэлектриков:

Проводники:

  • серебро
  • медь
  • золото
  • алюминий
  • железо
  • сталь
  • латунь
  • бронза
  • ртуть
  • графит
  • грязная вода
  • бетон

Диэлектрики:

  • стекло
  • резина
  • нефть
  • асфальт
  • стекловолокно
  • фарфор
  • керамика
  • кварц
  • (сухой) хлопок
  • (сухая) бумага
  • (сухая) древесина
  • пластмасса
  • воздух
  • алмаз
  • чистая вода

Следует понимать, что не у всех проводящих материалов одинаковый уровень проводимости, и не все диэлектрики одинаково сопротивляются движению электронов. Электрическая проводимость аналогична прозрачности некоторых материалов: материалы, которые легко "пропускают" свет, называют "прозрачными", а те, которые его не пропускают, называют "непрозрачными". Однако, не все прозрачные материалы одинаково пропускают свет. Оконное стекло - лучше чем органическое стекло, и конечно лучше чем "прозрачное" стекловолокно. Так же и с электрическими проводниками, некоторые из них лучше пропускают электроны, а некоторые - хуже.

Например, серебро является лучшим проводником в представленном выше списке "проводников", обеспечивая более легкий проход электронов чем любой другой материал из этого списка. Грязная вода и бетон также значатся как проводники, но эти материалы являются существенно менее проводящими чем любой металл.

Некоторые материалы изменяют свои электрические свойства при различных температурных условиях. Например, стекло является очень хорошим диэлектриком при комнатной температуре, но становится проводником, если его нагреть до очень высокой температуре. Газы, такие как воздух, в обычном состоянии - диэлектрики, но они также становятся проводниками при нагревании до очень высоких температур. Большинство металлов, наоборот, становятся менее проводимыми при нагревании, и увеличивают свою проводимость при охлаждении. Многие проводники становятся идеально проводящими (сверхпроводимость) при экстремально низких температурах.

В обычном состоянии движение "свободных" электронов в проводнике хаотично, без определенного направления и скорости. Однако, путем внешнего воздействия можно заставить эти электроны двигаться скоординировано через проводящий материал. Такое направленное движение электронов мы называем электричеством, или электрическим током. Чтобы быть более точным, его можно назвать динамическим электричеством в отличие от статического электричества, в котором накопленный электрический заряд неподвижен. Электроны могут перемещаться в пустом пространстве внутри и между атомами проводника точно так же, как вода течет через пустоту трубы. Приведенная аналогия с водой в нашем случае уместна, потому что движение электронов через проводник часто упоминается как "поток".

Поскольку электроны двигаются через проводник равномерно, то каждый из них толкает находящиеся впереди электроны. В результате все электроны движутся одновременно. Начало движения и остановка электронного потока на всем протяжении проводника фактически мгновенны, даже несмотря на то, что движение каждого электрона может быть очень медленным. Приблизительную аналогию мы можем увидеть на примере трубки, заполненной мраморными шариками:

stat8

Трубка заполнена мраморными шариками точно также, как проводник заполнен свободными электронами, готовыми к перемещению под воздействием внешних факторов. Если вставить еще один мраморный шарик в эту заполненную трубку слева, то последний шарик сразу выйдет из нее справа. Несмотря на то, что каждый шарик прошел короткое расстояние, передача движения через трубку в целом произошла мгновенно от левого конца до правого, независимо от  длины трубки. В случае с электричеством, передача движения электронов от одного конца проводника к другому происходит со скоростью света: около 220 000 км. в секунду!!! Каждый отдельный электрон проходит через проводник в гораздо более медленном темпе.

Если мы хотим, чтобы электроны текли в определенном направлении к определенному месту, мы должны проложить для них соответствующий путь из проводов, точно так же, как водопроводчик должен проложить трубопровод, чтобы подвести воду к нужному месту. Для облегчения этой задачи, провода изготавливаются из хорошо проводящих металлов, таких как медь или алюминий.

Электроны могут течь только тогда, когда у них есть возможность перемещаться в пространстве между атомами материала. Это означает, что электрический ток может быть только там, где существует непрерывный путь из проводящего материала, обеспечивающего передвижение электронов. По аналогии с мраморными шариками мы можем видеть, что шарики будут "течь" через трубку только в том случае, если она будет открыта с правой стороны. Если трубку заблокировать, то мрамор будет "накапливаться" в ней, а соответственно не будет и "потока". То же самое верно и для электрического тока: непрерывный поток электронов требует непрерывного пути для обеспечения этого потока. Давайте посмотрим на схему, чтобы понять, как это работает:

stat9

 

Тонкая, сплошная линия (показанная выше) является схематическим обозначением непрерывной части провода. Так как провод сделан из проводящего материала, такого как медь, у  составляющих его атомов существует много свободных электронов, которые могут свободно перемещаться по нему. Однако, в пределах такого провода никогда не будет направленного и непрерывного потока электронов, если у него не будет места, откуда приходят электроны и места, куда они идут. Давайте в нашу схему добавим гипотетические  "Источник" и "Получатель" электронов:

 

stat10

Теперь, когда Источник поставляет новые электроны в провод, через этот провод пойдет поток электронов (как показано стрелками, слева-направо). Однако, поток будет прерван, если проводящий путь, образованный проводом, повредить:

stat11

 

В связи с тем, что воздух является диэлектриком, образовавшийся воздушный разрыв разделит провод на две части. Некогда непрерывный путь нарушается, и электроны не могут течь от Источника к Получателю. Аналогичная ситуация получится, если водопроводную трубу разрезать на две части, а концы в месте разреза закупорить: вода в этом случае течь не сможет. Когда провод был одним целым, у нас была электрическая цепь, и эта цепь была нарушена в момент повреждения. 

Если мы возьмем еще один провод  и соединим им две части поврежденного провода, то снова будем иметь непрерывный путь для потока электронов. Две точки на схеме показывают физический (металл-металл) контакт между проводами:

stat12

Теперь у нас снова есть цепь, состоящая из Источника, нового провода (соединяющего поврежденный) и Получателя электронов. Если рассматривать аналогию с водопроводом, то  установив тройник на одной из закупоренных туб, мы можем направить воду через новый сегмент трубы к месту назначения. Обратите внимание, что в правой части поврежденного провода нет потока электронов, потому что он больше не является частью пути от Источника до получателя электронов.  

Следует отметить что проводам, в отличие от водопроводных труб, которые в конечном итоге разъедаются ржавчиной, никакой "износ" от воздействия потока электронов не грозит. При движении электронов, в проводнике возникает определенная сила трения, которая может вырабатывать тепло. Подробнее эту тему мы рассмотрим несколько позже.

Краткий обзор:

  • В проводниках, электроны находящиеся на внешних орбитах атомов могут легко покинуть эти атомы, или наоборот присоединится к ним. Такие электроны называются свободными электронами.
  • В диэлектриках внешние электроны имеют намного меньше свободы передвижения, чем в проводниках.
  • Все металлы являются электрически проводящими.
  • Динамическое электричество, или электрический ток - это  направленное движение электронов через проводник.
  • Статическое электричество - это неподвижный (если на диэлектрике), накопленный заряд, сформированный избытком или недостатком электронов в объекте.
  • Для обеспечения потока электронов нужен целый, неповрежденный проводник, который обеспечит приём и выдачу электронов.

Источник: Lessons In Electric Circuits

www.radiomexanik.spb.ru

Открытый урок-лекция "Электризация тел. Проводники и диэлектрики"

Разделы: Физика

Цели:

  1. Познакомить учащихся с электрическими явлениями.
  2. Дать определение этого явления.
  3. Раскрыть значение этого явления для понимания окружающих явлений.
  4. Показать на, опыте, что электризуются все тела.
  5. Ознакомить с принципом действия электроскопа и электрометра.
  6. Объяснить их различие.
  7. Дать понятие проводников и диэлектриков.
  8. Развивать умение наблюдать и анализировать явления, а также познавательный интерес при постановке учебной проблемы.
  9. Формировать умения применять изученное явление в реальной жизни.
  10. Организовать самоконтроль

План урока

I. Организационный момент.

II. Изучение нового материала.

Беседа. Рассказ учителя.

Записи в тетрадях. Работа с учебником. Демонстрация опытов. Доклад об электрическом скате.

III. Закрепление.

IV. Самоконтроль

V. Домашнее задание.

План урока:

I. Организационный момент:

- проверка домашнего задания.

II. Изучение нового материала:

- Ребята вы уже второй год изучаете физику.

- Какие явления вы изучили (тепловые, механические). Эти явления имеют большое значение для понимания окружающих явлений. Сегодня на уроке мы познакомимся с электрическими явлениями. Они встречаются сплошь и рядом. С древности такое атмосферное явление как молния наводило на людей ужас, ей приписывалось божественная сила. Очень долгое время ученые не могли найти этому загадочному явлению объяснения.

Молния – электрический разряд между землей и облаком или между облаками. Тождественность молнии с искровым разрядом была доказана Бенжамином Франклином, в 18 веке. Это великий американский ученый писатель, тонкий наблюдатель природы преуспевающий делец, борец против тирании, выдающийся дипломат. О нем говорили: “Он отнял молнию у небес и меч у тиранов”. Им был сконструирован молниеотвод в 1750 году для предохранения зданий и кораблей от удара молнии.

Длина молнии может быть до 50 км и ток разряда 10-12 тыс. А напряжение - 150 млн. вольт. В лабораторных условиях создана молния длиной в 15 м при напряжении – 10 млн. вольт. Мы можем с вами пронаблюдать это.

Опыт 1. Демонстрация с помощью электрофорной машины искрового разряда.

Вопрос к классу:

– Почему во время грозы нельзя прятаться под деревьями. И прижиматься друг к другу.

(Этого нельзя делать, так как заряд накапливается на остриях, т.е. на верхушках деревьев. Деревья корнями проникают в глубокие водоносные слои почвы лучше “заземлены”. На верхушках и концах веток накапливаются значительные электрические заряды противоположные заряду, облаков. Например чаще всего молнией поражаются дуб, так как у него корни глубоко уходят в почву. Он под действием молнии разрывается на мелкие щепки, так как электрический ток протекающий по сердцевине дуба вызывает закипание сока и дерево разрывается. У смолистых деревьев этого не происходит, т.к. их сердцевина имеет большое сопротивление.

Но это только одно из многочисленных электрических явлений встречающихся в природе. В придонном слое океана образуется проводящий слой электричества в результате смеси морской воды и органических веществ.

На базальтовых стенах и колоннах древнегреческих храмов, среди бесчисленных изображений быков, воинов, нет-нет да и попадается изображение священной рыбы – нильского электрического сома, родственник европейского сома, благодаря мощному электрическому удару, который получал древний египтянин при попытке коснуться, способствовал присвоению ему священного титула.

Аристотель – древнегреческий философ рассказывал своим ученикам об электрическом скате, обитавшем в Средиземном море, который заставлял цепенеть животных, побеждая их силой удара живущего в его теле.

Древнеримский врач – Скрибоний излечивал подагру стареющих римских патрициев с помощью освежающего удара электрического угра.

В бассейне Амазонки индейцы ловили электрических угрей, загоняя в водоем лошадей, для того чтобы обессилить электрического угря от множества разрядов.

Встречается около 300 видов электрических рыб, но немногие дают сильный импульс. Наиболее ярким таким представителем является электрический скат.

Подробно об одном обитателе морских глубин электрическом скате рассказывает ученик.

Доклад учащегося об электрическом скате.

На доске: таблица с изображением электрических рыб.

- А вы ребята наблюдали ли электрические явления?

О первых наблюдениях говорится в древнегреческих легендах.

Существует легенда о том, что однажды к древнегреческому философу Фалесу, живущему в г. Милеш пришла дочь и протянула ему веретено, сделанное из драгоценного камня – электрона. Финикийские купцы изредка привозили изделия из этого желтого прозрачного, как первый лесной мед, камня в греческие города. Здесь они продавали их за большие деньги.

Девушка рассказала, что не раз уронив веретено на пол и стараясь его очистить от, приставшего сора, терла его пряжей. То при этом прямое веретено только сильнее притягивало к себе пылинки и нити.

От чего это так?

Подивился мудрец феномену, но еще больше порадовался наблюдательности дочки. Однако отвечать ей не торопился. Солнце закатилось, пришло время кликнуть раба, чтобы тот принес светильник. Но философ не сделал этого. В наступившей темноте он обнаружил, что если потереть электрон рукой, он весь покрывается голубыми крошечными искорками. Они вспыхивают и гаснут с легким треском.

Снова и снова трет Фалес веретено сухими ладонями и глядит, не может наглядеться. Сегодня он покажет это чудо ученикам и попробует порассуждать о нем может быть логика рассуждения приведет его к истине.

– Мы можем повторить опыт дочери Фалеса Милешского. Янтарные изделия для этого иметь не обязательно.

– Мы воспользуемся любым стеклянным или пластмассовым предметом.

Демонстрация опытов.

Опыт 2. Электризация трением о шёлк, о шерсть, пластмассовых ручек, расчесок с последующем притягиванием легких предметов (кусочек бумаги, нитей…)

– Что мы наблюдаем? (притягивание легких предметов)

– Как вы думаете, притягивается только легкие предметы?

– Но притягиваться могут не только легкие тела, но и тяжелые.

– Как вы думаете, все ли вещества электризуются? (электризуются все вещества: твердые, жидкие, газы)

Опыт 3. Электризация воды вытекающей из крана (подносим к струйке воды на электризованную эбонитовую палочку).

– Попробуйте дать определение электризации.

Запись определения в тетради.

Электризацией тел, называется возникновение электрических зарядов на телах при соприкосновении или через влияние (н-р, деревья, корпус самолета, машин…)

Тело, которое после натирания притягивает предметы называется наэлектризованным, или говорят, что ему сообщен заряд. Но телу можно сообщить q не обязательно натирая его, а достаточно прикосновения. Например, при разрезании кусочков резины или удара по куску сахара. Электрический заряд всегда связан с каким- нибудь телом или частицей. Он не может существовать сам по себе. Наэлектризовать можно любое тело:

Например: расческа и волосы; шелк и стекло и т.д. При электризации заряд распределяется между телами в зависимости от размеров тела. На большем по размеру теле сосредотачивается большой заряд.

Вопрос к классу:

- Кто знает, почему у бензовозов с цистерны до земли свисает цепь?

Это делается для того, чтобы большой величины заряд накопившейся на корпусе цистерны, в результате трения бензина о стенки, ушел в землю, так как земля во много раз больше бензовоза. С этой же целью ставятся молниеотводы на домах, заземляют отопительные батареи в городских квартирах.

- Каким образом могут взаимодействовать наэлектризованные тела?

Опыт.4

К подвешенной заряженной эбонитовой палочке поочередно подносим отрицательно заряженную палочку. Наблюдаем отталкивание, а если поднести положительно заряженную палочку (о чем сообщается в ходе опыта учеником), то – притягивается. Делаем вывод.

Вывод: электрический заряд существующей в природе бывает двух родов. Условно они названы: “+” – положительный;

“–” – отрицательный. Одноименно заряженные тела взаимно - отталкиваются, разноименно заряженные тела – притягиваются.

При электризации происходит следующее, часть “–” заряд передается одному телу, при этом другому сообщается “+” равный по величине. В электризации всегда принимают участие два тела.

Для того, чтобы узнать наэлектризовано тело или нет имеется прибор, который называется электроскопом или электрометром. Они имеют металлический корпус с двух сторон закрытый стеклами. Через пластмассовую пробку, вставленную в металлическую оправу пропущен металлический стержень на конце, которого укреплены два листочка (стрелка). Чем больше электрический заряд сообщен электроскопу (электрометру) тем на больший угол расходятся листочки (отклоняется стрелка), если сообщить электроскопу заряд противоположного знака, то листочки (стрелка) упадут.

Демонстрация электроскопа, электрометра и его работы.

Вопрос к классу:

– Что можно определить с помощью электроскопа (электрометра)? (заряжено тело или нет, знак сообщенного заряда, величину заряда).

– Какой заряд по величине большой или маленький?

По способности проводить электрические заряды вещества условно делятся на проводники и непроводники (диэлектрики).

К проводникам относятся металлы, растворы солей, кислот, щелочей, тело человека и другие.

К непроводникам электричества, или диэлектрикам относятся фарфор, эбонит, стекло, воздух и ряд некоторых веществ.

Запись в тетради.

Вещества, проводящие электрический заряд от заряженного тела к незаряженному называется проводниками.

Вещества, не проводящие электрический заряд от заряженного тела к незаряженному называется непроводниками.

Вопрос к классу.

- Знаете ли вы, почему не разрешают заливать бензин на автозаправках в пластмассовые канистры?

Этого нельзя делать потому что пластмасс – диэлектрик. Из – за трения бензина может произойти взрыв, а в металлических – заряд вытесненный изнутри на поверхность уйдет в землю.

Итог:

На уроке познакомились с электрическими явлениями, дали понятие электризации, рассмотрели взаимодействие заряженных тел принцип действия) электроскопа. Дали определение проводникам и непроводникам (Делают учащиеся, с помощью учителя).

Проверка на сколько освоен материал

Тесты через графопроектор проецируется на экран, учащие выбирают из двух ответов один правильный.

III. Закрепление.

- Каким явлением мы сегодня познакомились?

- Каким образом происходит электризация тел?

- Сколько тел участвуют в электризации?

- Какие заряды существуют в природе?

- Как ведут себя одноименно заряженные?

- С помощью каких приборов можно узнать наэлектризовано тело или нет?

- Какие вещества являются проводниками, диэлектриками? Приведите примеры.

IV. Самоконтроль.

С помощью графопроектора на экран проектируется задание.

1) В каком случае взаимодействие зарядов указано правильно?

2) Определить знак заряда палочки

3) Вам известно, что натиранием о шерсть заражаются палочки из резины, серы, эбонита, пластмассы. Заражается ли при этом шерсть?

4) Как взаимодействую друг с другом две эбонитовые палочки наэлектризованные трением о мех?

А. отталкиваются Б. притягиваются

5) К каким веществам относятся фарфор, стекло, воздух?

А. к проводникам

Б. к непроводникам

Самоконтроль

Ответы тестов на закрытой части доски.

За 5 правильных ответов - “5”

За 4 - “4”
За 3 - “3”,

меньше трех правильных ответов оценивается на “2”

V. Подведение итогов.

VI.Домашнее задание: § 25 – 27 Р 1179, 1173, вопросы.

xn--i1abbnckbmcl9fb.xn--p1ai

Чем отличаются диэлектрики от проводников?

Все вещества состоят из молекул, молекулы из атомов, атомы из положительно заряженных ядер вокруг которых располагаются отрицательные электроны. При определенных условиях электроны способны покидать свое ядро и передвигаться к соседним. Сам атом при этом становится положительно заряженным, а соседний получает отрицательный заряд. Передвижение отрицательных и положительных зарядов под действием электрического поля получило название электрического тока.

В зависимости от свойства материалов проводить электрический ток их делят на:

  1. Проводники.
  2. Диэлектрики.
  3. Полупроводники.

Свойства проводников

Проводники отличаются хорошей электропроводностью. Это связано с наличием у них большого количества свободных электронов не принадлежащих конкретно ни одному из атомов, которые под действием электрического поля могут свободно перемещаться.

Большинство проводников имеют малое удельное сопротивление и проводят электрический ток с очень небольшими потерями. В связи с тем, что идеально чистых по химическому составу элементов в природе не существует, любой материал в своем составе содержит примеси. Примеси в проводниках занимают места в кристаллической решетке и, как правило, препятствуют прохождению свободных электронов под действием приложенного напряжения.

Проводник

Примеси ухудшают свойства проводника. Чем больше примесей, тем сильнее они влияю на параметры проводимости.

Хорошими проводниками с малым удельным сопротивлением являются такие материалы:

  • Золото.
  • Серебро.
  • Медь.
  • Алюминий.
  • Железо.

Золото и серебро – хорошие проводники, но из-за высокой стоимости применяются там, где необходимо получить хорошие качественные проводники с малым объемом. Это в основном электронные схемы, микросхемы, проводники высокочастотных устройств у которых сам проводник изготовлен из дешевого материала (медь), который сверху покрыт тонким слоем серебра или золота. Это дает возможности  при минимальном расходе драгоценного металла хорошие частотные характеристики проводника.

Медь и алюминий — более дешевые металлы. При незначительном снижении характеристик этих материалов, их цена на порядки ниже, что дает возможность для их массового применения. Применяют в электронике, в электротехнике. В электронике – это дорожки печатных плат, ножки радиоэлементов, радиаторы и др. В электротехнике очень широко применяется в обмотках двигателей, для прокладки электрических сетей высокого и низкого напряжения, разводку электричества в квартирах, домах, в транспорте.

Параметр проводимости очень сильно зависит от температуры самого материала. При увеличении температуры кристалла, колебания электронов в кристаллической решетке увеличивается, препятствуя свободному прохождению свободных электронов. При снижении – наоборот, сопротивление уменьшается и при некотором значении близком к абсолютному нулю, сопротивление становится нулевым и возникает эффект сверхпроводимости.

Свойства диэлектриков

Диэлектрики в своей кристаллической решетке содержат очень мало свободных электронов, способных переносить заряде под действием электрического поля. В связи с этим при создании разности потенциалов на диэлектрике, ток, проходящий через него такой незначительный, что считается равным нулю — диэлектрик не проводит электрический ток. Наряду с этим, примеси, содержащиеся в любом диэлектрике, как правило, ухудшают его диэлектрические свойства. Ток, проходящий через диэлектрик под действием приложенного напряжения в основном определяется количеством примесей.

Диэлектрики

Диэлектрики

Наибольшее распространение диэлектрики получили в электротехнике там, где необходимо защитить обслуживающий персонал от вредного воздействия электрического тока. Это изолирующие ручки разных приборов, устройств измерительной техники. В электронике – прокладки конденсаторов, изоляция проводов, диэлектрические прокладки необходимые для теплоотвода активных элементов, корпуса приборов.

Полупроводники – материалы, которые проводят электричество при определенных условиях, в другом случае ведут себя как диэлектрики.

Таблица: чем отличаются проводники и диэлектрики?

  Проводник Диэлектрик
Наличие свободных электронов Присутствуют в большом количестве Отсутствуют, или присутствуют, но очень мало
Способность материалов проводить электрический ток Хорошо проводит Не проводит, или ток незначительно мал
Что происходит при увеличении приложенного напряжение Ток, проходящий через проводник, увеличивается согласно закону Ома Ток, проходящий через диэлектрик изменяется незначительно и, при достижения определенного значения, происходит электрический пробой
Материалы Золото, серебро, медь и ее сплавы, алюминий и сплавы, железо и другие Эбонит, фторопласт, резина, слюда, различные пластмассы, полиэтилен и другие материалы
Сопротивление от 10-5 до 10-8 степени Ом/м 1010 – 1016 Ом/м
Влияние посторонних примесей на сопротивление материала Примеси ухудшают свойство проводимости материала, что ухудшает его свойства Примеси улучшают проводимость материала, что ухудшает его свойства
Изменение свойств при изменении температуры окружающей среды При увеличении температуры – сопротивление увеличивается, при снижении – уменьшается. При очень низких температурах – сверхпроводимость. При увеличении температуры – сопротивление уменьшается.

vchemraznica.ru

Диэлектрики в науке и в быту

Диэлектрики - это вещества, которые не проводят электрический ток, до определенной поры. При определенных условиях проводимость в них зарождается. Этими условиями выступают механические, тепловые - в общем, энергетические виды воздействий. Кроме диэлектриков, вещества также классифицируются на проводники и полупроводники.

Теоретическую разницу между этими тремя видами материалов можно представить, и я это сделаю, на рисунке ниже:

Рисунок красивый, знакомый со школьной скамьи, но что-то практическое из него не особо вытянешь. Однако, в этом графическом шедевре четко определена разница между проводником, полупроводником и диэлектриком.

И отличие это в величине энергетического барьера между валентной зоной и зоной проводимости.

В проводниках электроны находятся в валентной зоне, но не все, так как валентная зона - это самая внешняя граница. Точно, это как с мигрантами. Зона проводимости пуста, но рада гостям, так как у неё полно для них свободных рабочих мест в виде свободных энергетических зон. При воздействии внешнего электрического поля, крайние электроны приобретают энергию и перемещаются в свободные уровни зоны проводимости. Это движение мы еще называем электрическим током.

В диэлектриках и проводниках всё аналогично, за исключением того, что имеется “забор” - запрещенная зона. Эта зона расположена между валентной и зоной проводимости. Чем больше эта зона, тем больше энергии требуется для преодоления электронами этого расстояния. У диэлектриков величина зоны больше, чем у полупроводников. Этому есть даже условие: если дЭ>3Эв (электронвольт) - то это диэлектрик, в обратном случае дЭ

В данной статье речь далее пойдет только о диэлектриках. И раз уж мы чуть углубились в науку, то поговорим далее о свойствах и величинах, которые характеризуют эти электротехнические материалы в общем.

Классификация диэлектриков довольна обширная. Тут встречаются жидкие, твердые и газообразные вещества. Далее они делятся по определенным признакам. Ниже приведена условная классификация диэлектриков с примерами в форме списка.

  • газообразные
    • - полярные
    • - неполярные (воздух, элегаз)
  • жидкие
    • - полярные (вода, аммиак)
      • - жидкие кристаллы
    • - неполярные (бензол, трансформаторное масло)
  • твердые
    • - центросимментричные
      • - аморфные
        • - смолы, битумы (эпоксидная смола)
        • - стекла
        • - неупорядоченные полимеры
      • - поликристаллы
        • - нерегулярные кристаллы
        • - керамика
        • - упорядоченные полимеры
        • - ситаллы
      • - монокристаллы
        • - молекулярные
        • - ковалентные
        • - ионные
          • - параэлектрики смещения
          • - параэлектрики „порядок-беспорядок”
        • - дипольные
      • - нецентросимментричные
        • - монокристаллы
          • - пироэлектрики
            • - сегнетоэлектрики смещения
            • - сегнетоэлектрики „порядок-беспорядок”
            • - линейные пироэлектрики
          • - пьезоэлектрики
            • - с водородными связями
            • - ковалентные
            • - ионные
        • - текстуры
          • - электронных дефектов
          • - ионных дефектов
          • - полярных молекул
          • - макродиполей
          • - сегнетоэлектрических доменов
          • - кристаллов в матрице

    Если брать жидкие и газообразные диэлектрики, то основная классификация лежит в вопросе полярности. Разница в симметричности молекул. В полярных молекулы несимметричны, в неполярных - симметричны. Несимметричные молекулы называются диполями. В полярных жидкостях проводимость настолько велика, что их невозможно использовать в качестве изоляционных веществ. Поэтому для этих целей используют неполярные, тоже трансформаторное масло. А наличие полярных примесей даже в сотых долях значительно снижает планку пробоя и негативно сказывается на изоляционных свойствах неполярных диэлектриков.

    кристаллы представляют собой нечто среднее между жидкостью и кристаллом, как следует из названия.

    Еще популярным вопросом о свойствах и применении жидких диэлектриков будет следующий: вода - диэлектрик или проводник? В чистой дистиллированной воде отсутствуют примеси, которые могли бы вызвать протекание тока. Чистую воду можно создать в лабораторных, промышленных условиях. Эти условия сложны и трудновыполнимы для обычного человека. Есть простой способ проверить проводит ли дистиллированная вода ток.

    является ли вода диэлектриком

    Создать электрическую цепь (источник тока - провод - вода - провод - лампочка - другой провод - источник тока), в которой одним из участков для протекания тока будет сосуд с дистиллированной водой. При включении схемы в работу, лампочка не загорится - следовательно ток не проходит. Ну а если загорится, значит вода с примесями.

    Поэтому любая вода, которую мы встречаем: из крана, в озере, в ванной - будет проводником за счет примесей, которые создают возможность для протекания тока. Не купайтесь в грозу, не работайте влажными руками с электричеством. Хотя чистая дистиллированная вода - полярный диэлектрик.

    Для твердых диэлектриков классификация в основном лежит в вопросе активности и пассивности что ли. Если свойства постоянны, то диэлектрик используют в качестве изоляционного материала, то есть он пассивен. Если свойства меняются, в зависимости от внешних воздействий (тепло, давление), то этот диэлектрик применяют для других целей. Бумага является диэлектриком, если вода пропитана водой - то ток проводится и она проводник, если бумага пропитана трансформаторным маслом - то это диэлектрик.

    Фольгой называют тонкую металлическую пластину, металл - как известно является проводником. В продаже имеется например ПВХ-фольга, тут слово фольга для наглядности, а слово ПВХ - для понимания смысла - ведь ПВХ это диэлектрик. Хотя в википедии - фольгой называется тонкий лист металла.

    Аморфные жидкости - это и смола, и стекло, и битум, и воск. При повышении температуры этот диэлектрик тает, это замороженные вещества - это дикие определения, которые характеризуют лишь одну грань правды.

    Поликристаллы - это, как бы сросшиеся кристаллы, объединенные в один кристалл. Например, соль.

    Монокристалл - это цельный кристалл, в отличие от вышеупомянутого поликристалла имеющий непрерывную кристаллическую решетку.

    Пьезоэлектрики - диэлектрики, у которых при механическом воздействии (растяжении-сжатии), возникает процесс ионизации. Применяется в зажигалках, детонаторах, УЗИ-обследовании.

    Пироэлектрики - при изменении температуры в этих диэлектриках происходит самопроизвольная поляризация. Также она происходит при механическом воздействии, то есть пироэлектрики являются еще и пьезоэлектриками, но не наоборот. Примерами служат янтарь и турмалин.

    Физические свойства диэлектриков

    Чтобы оценить качество и степень пригодности диэлектрика, необходимо как-то описать его параметры. Если следить за этими параметрами, то можно вовремя предотвратить аварию, заменив элемент на новый с допустимыми параметрами. Этими параметрами выступают: поляризация, электропроводность, электрическая прочность и диэлектрические потери. Для каждого из этих параметров существует своя формула и постоянная величина, в сравнении с которой производится заключение о степени пригодности материала.

    Главными электрическими свойствами диэлектриков являются поляризация (смещение зарядов) и электропроводность (способность проводить электрический ток) Смещение связанных зарядов диэлектрика или их ориентация в электрическом поле называется поляризацией. Это свойство диэлектрических материалов характеризуется относительной диэлектрической проницаемостью ε. При поляризации на поверхности диэлектрика образуются связанные электрические заряды.

    В зависимости от типа диэлектрика поляризация может быть: электронной, ионной, дипольно-релаксационной, спонтанной. Более подробно про их свойства на инфографике ниже.

    инфографика поляризации диэлектриков

    Под электропроводностью понимают способность диэлектрика проводить электрический ток. Ток, протекающий в диэлектрике называется током утечки. Ток утечки состоит из двух составляющих - тока абсорбционного и тока сквозного. Сквозные токи обусловлены наличием свободных зарядов в диэлектрике, абсорбционный ток - поляризационными процессами до момента установления равновесия в системе.

    Величина электропроводности зависит от температуры, влажности и количества свободных носителей заряда.

    При увеличении температуры электропроводность диэлектриков увеличивается, а сопротивление падает.

    Зависимость от влажности вновь возвращает нас к классификации диэлектриков. Ведь, неполярные диэлектрики не смачиваются водой и на изменение влажности им нет дела. А у полярных диэлектриков при увеличении влажности повышается содержание ионов, и электропроводность увеличивается.

    Проводимость диэлектрика состоит из поверхностной и объемной проводимостей. Известно понятие удельной объемной проводимости, обозначается буквой сигма σ. А обратная величина называется удельное объемной сопротивление и обозначается буквой ро ρ.

    Резкое увеличение проводимости в диэлектрике при возрастании напряжения может привести к электрическому пробою. И аналогично, если сопротивление изоляции падает, значит изоляция не справляется со своей задачей и необходимо применять меры. Сопротивление изоляции состоит из поверхностного и объемного сопротивлений.

    Под диэлектрическими потерями в диэлектриках понимают потери тока внутри диэлектрика, которые рассеиваются в виде тепла. Для определения этой величины вводят параметр тангенс дельта tgδ. δ - угол, дополняющий до 90 градусов, угол между током и напряжением в цепи с емкостью.

    Диэлектрические потери бывают: резонансные, ионизационные, на электропроводность, релаксационные. Теперь подробнее поговорим про каждый тип.

    виды диэлектрических потерь

    Электрическая прочность это отношение пробивного напряжения к расстоянию между электродами (или толщина диэлектрика). Эта величина определяется минимальной величиной напряженности электрического поля, при которой произойдет пробой.

    Пробой может быть электрическим (ударная ионизация, фотоионизация), тепловым (большие диэлектрические потери, следовательно много тепла, и обугливание с оплавлением может произойти) и электрохимическим (в результате образования подвижных ионов).

    И в конце таблица диэлектриков, как же без нее.

    электрические характеристики диэлектриков таблица

    В таблице выше приведены данные по электрической прочности, удельному объемному сопротивлению и относительной диэлектрической проницаемостью для различных веществ. Также тангенс угла диэлектрических потерь не обошли стороной.

    pomegerim.ru

    К.Ю.Богданов, §36 учебника ФИЗИКА-10

    § 36. ПРОВОДНИКИ И ДИЭЛЕКТРИКИ В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ.

    Взаимодействие тел с электрическим полем зависит от того, из каких веществ они состоят, а именно, содержат, или нет, эти вещества  заряженные частицы (электроны или ионы), способные свободно перемещаться под действием электрических сил.

    Заряженные частицы, которые могут свободно перемещаться в электрическом поле, называют свободными зарядами, а вещества, содержащие их, - проводниками. Проводниками являются металлы, жидкие растворы и расплавы электролитов. Свободными зарядами в металле являются электроны внешних оболочек атомов, потерявшие с ними связь. Эти электроны, называемые свободными электронами, могут свободно двигаться по металлическому телу в любом направлении. В растворах солей свободными зарядами служат положительно и отрицательно заряженные ионы.

    В условиях электростатики, т.е., когда электрические заряды неподвижны, напряжённость электрического поля внутри проводника всегда равна нулю. Действительно, если предположить, что поле внутри проводника всё-таки есть, то тогда на находящиеся в нём свободные заряды будет действовать электрические силы, пропорциональные напряжённости поля, и эти заряды начнут двигаться, а значит, поле перестанет быть электростатическим. Таким образом, электростатическое поле внутри проводника отсутствует.

    Исчезновение внутри проводника электростатического поля происходит следующим образом. Пусть металлический проводник в форме шара вносят в электрическое поле, напряжённость которого в данной области постоянна, т.н. однородное поле. Как только это произойдёт, свободные электроны проводника под действием электрических сил начнут перемещаться (см. стрелки на рис. 36а), в результате чего одна часть проводника зарядится положительно, а другая – отрицательно. Этот процесс перемещения закончится тогда, когда образовавшиеся заряды на противоположных частях шара создадут внутри проводника такое поле, которое полностью компенсирует внешнее электрическое поле. После этого напряжённость электрического поля внутри шара станет равной нулю, и свободные заряды опять станут неподвижными. При этом переместившиеся заряды изменят поле снаружи проводника (рис. 36б), а его силовые линии станут перпендикулярными поверхности шара, т.к. составляющая вектора напряжённости, параллельная поверхности проводника, вызвала бы движение его свободных зарядов. Явление, приводящее к исчезновению электростатического поля внутри проводника, называют электростатической индукцией.      

    Вещества, в которых нет свободных зарядов, называют диэлектриками или изоляторами. Примерами диэлектриков могут служить различные газы, некоторые жидкости (вода, бензин, спирт и др.), а также многие твёрдые вещества (стекло, фарфор, плексиглас, резина и др.).

    Существуют два вида диэлектриков – полярные и неполярные. В молекуле полярного диэлектрика положительные заряды находятся преимущественно в одной её части («+» полюс), а отрицательные – в другой («-» полюс). У неполярного диэлектрика положительные и отрицательные заряды одинаково распределены по молекуле.

    Во внешнем поле на разноимённые полюса молекулы полярного диэлектрика действуют противоположно направленные силы (F и –F на рис. 36в), которые стараются повернуть молекулу вдоль вектора напряжённости поля. Внешнее поле действует также и на молекулу неполярного диэлектрика, перемещая внутри неё разноимённые заряды в разные стороны, в результате чего эта молекула становится похожей на молекулу полярного диэлектрика, ориентируясь тоже вдоль линий поля. Таким образом, во внешнем поле заряды в молекулах диэлектрика смещаются в направлении действия электрических сил (рис. 36г). Это явление называют поляризацией диэлектрика.

    При поляризации диэлектрика на его противоположных по отношению к внешнему полю поверхностях появляются  разноимённые электрические заряды, называемые связанными. Связанные заряды создают в диэлектрике электрическое поле, вектор напряжённости которого направлен противоположно вектору внешнего поля, в результате чего электрическое поле внутри диэлектрика уменьшается в e раз. Величину e называют диэлектрической проницаемостью диэлектрика, которая равна для воздуха - 1,0006, бензина – 2,3, плексигласа – 3,4, стекла - от 5 до 10, а для воды – 81.   

    Вопросы для повторения:

    ·        Что такое свободные заряды, проводники и диэлектрики?

    ·        Опишите явление электростатической индукции.

    ·        Что такое поляризация диэлектрика?

    Рис. 36. Металлический шар в поле до (а) и после (б) электростатической индукции; (в) – силы, действующие на молекулу полярного диэлектрика во внешнем поле; (г) – хаотичная ориентация молекул полярного диэлектрика в отсутствии (верх) и присутствии (низ) внешнего электрического поля, E.

    kaf-fiz-1586.narod.ru

    Проводники и диэлектрики в электричестве

    электрический ток Все материалы, существующие в природе, различаются своими электрическими свойствами. Таким образом, из всего многообразия физических веществ в отдельные группы выделяются диэлектрические материалы и проводники электрического тока. 

    Что представляют собой проводники?

    Проводник – это такой материал, особенностью которого является наличие в составе свободно передвигающихся заряженных частиц, которые распространены по всему веществу. 

    Проводящими электрический ток веществами являются расплавы металлов и сами металлы, недистиллированная вода, раствор солей, влажный грунт, человеческое тело.

    Металл – это самый лучший проводник электрического тока. Также и среди неметаллов есть хорошие проводники, например, углерод. 

    Все, существующие в природе проводники электрического тока, характеризуются двумя свойствами:

    • показатель сопротивления;
    • показатель электропроводности.
    Сопротивление возникает из-за того, что электроны при движении испытывают столкновение с атомами и ионами, которые являются своеобразным препятствием. Именно поэтому проводникам присвоена характеристика электрического сопротивления. Обратной сопротивлению величиной является электропроводность. 

    Электропроводность – это характеристика (способность) физического вещества проводить ток. Поэтому свойствами надежного проводника являются низкое сопротивление потоку движущихся электронов и, следовательно, высокая электропроводность. То есть, лучший проводник характеризуется большим показателем проводимости.  

    Например кабельная продукция: медный кабель обладает большей электропроводностью по сравнению с алюминиевым.

    Что представляют собой диэлектрики?

    Диэлектрики – это такие физические вещества, в которых при заниженных температурах отсутствуют электрические заряды. В состав таких веществ входят лишь атомы нейтрального заряда и молекулы. Заряды нейтрального атома имеют тесную связь друг с другом, поэтому лишены возможности свободного перемещения по всему веществу. 

    Самым лучшим диэлектриком является газ. Другие непроводящие электрический ток материалы – это стеклянные, фарфоровые, керамические изделия, а также резина, картон, сухое дерево, смолы и пластмассы. 

    Диэлектрические предметы – это изоляторы, свойства которых главным образом зависимы от состояния окружающей атмосферы. Например, при высокой влажности некоторые диэлектрические материалы частично лишаются своих свойств. 

    Проводники и диэлектрики широко используются в сфере электротехники для решения различных задач. 

    Например, вся кабельно-проводниковая продукция изготавливается из металлов, как правило, из меди или алюминия. Оболочка проводов и кабелей полимерная, также, как и вилках всех электрических приборов. Полимеры – отличные диэлектрики, которые не допускают пропуска заряженных частиц. 

    Серебряные, золотые и платиновые изделия – очень хорошие проводники. Но их отрицательная характеристика, которая ограничивает использование, состоит в очень высокой стоимости.

    Поэтому применяются такие вещества в сферах, где качество гораздо важнее цены, которая за него уплачивается (оборонная промышленность и космос). 

    Медные и алюминиевые изделия также являются хорошими проводниками, при этом имеют не столь высокую стоимость. Следовательно, использование медных и алюминиевых проводов распространено повсеместно. 

    Вольфрамовые и молибденовые проводники имеют менее хорошие свойства, поэтому используются в основном в лампочках накаливания и нагревательных элементах высокой температуры. Плохая электропроводность может существенно нарушить работу электросхемы. 

    Диэлектрики также различаются между собой своими характеристиками и свойствами. Например, в некоторых диэлектрических материалах также присутствуют свободные электрически заряды, пусть и в небольшом количестве. Свободные заряды возникают из-за тепловых колебаний электронов, т.е. повышение температуры все-таки в некоторых случаях провоцирует отрыв электронов от ядра, что понижает изоляционные свойства материала. Некоторые изоляторы отличаются большим числом «оторванных» электронов, что говорит о плохих изоляционных свойствах. 

    Самый лучший диэлектрик – полный вакуум, которого очень трудно добиться на планете Земля. 

    Полностью очищенная вода также имеет высокие диэлектрические свойства, но таковой даже не существует в реальности. При этом стоит помнить, что присутствие каких-либо примесей в жидкости наделяет ее свойствами проводника. 

    Главный критерий качества любого диэлектрического материала – это степень соответствия возложенным на него функциям в конкретной электрической схеме. Например, если свойства диэлектрика таковы, что утечка тока совсем незначительная и не приносит никакого ущерба работе схемы, то диэлектрик является надежным. 

    Что такое полупроводник?

    Промежуточное место между диэлектриками и проводниками занимают полупроводники. Главное отличие проводников заключается в зависимости степени электропроводности от температуры и количества примесей в составе. При том материалу свойственны характеристики и диэлектрика, и проводника. 

    С ростом температуры электропроводность полупроводников растет, а степень сопротивления при этом падает. При понижении температуры сопротивление стремится к бесконечности. То есть, при достижении нулевой температуры полупроводники начинают вести себя как изоляторы. 

    Полупроводниками являются кремний и германий.

    Статья по теме: Электрический ток и его скорость

    www.elektro.ru


    Смотрите также